




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省唐山丰南区六校联考2024届数学九年级第一学期期末检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.两个全等的等腰直角三角形,斜边长为2,按如图放置,其中一个三角形45°角的项点与另一个三角形的直角顶点A重合,若三角形ABC固定,当另一个三角形绕点A旋转时,它的角边和斜边所在的直线分别与边BC交于点E、F,设BF=CE=则关于的函数图象大致是()A. B. C. D.2.为了考察某种小麦的长势,从中抽取了5株麦苗,测得苗高(单位:cm)为:10、16、8、17、19,则这组数据的极差是()A.8 B.9 C.10 D.113.要得到抛物线,可以将()A.向左平移1个单位长度,再向上平移3个单位长度B.向左平移1个单位长度,再向下平移3个单位长度C.向右平移1个单位长度,再向上平移3个单位长度D.向右平移1个单位长度,再向下平移3个单位长度4.如图,点在线段上,在的同侧作角的直角三角形和角的直角三角形,与,分别交于点,,连接.对于下列结论:①;②;③图中有5对相似三角形;④.其中结论正确的个数是()A.1个 B.2个 C.4个 D.3个5.下列图案中,既是轴对称图形又是中心对称图形的是()A. B. C. D.6.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()A. B. C. D.7.-2019的相反数是()A.2019 B.-2019 C. D.8.如图,的半径为,圆心到弦的距离为,则的长为()A. B. C. D.9.把抛物线y=ax2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y=x2-2x+3,则b+c的值为()A.9 B.12 C.-14 D.1010.把函数的图象,经过怎样的平移变换以后,可以得到函数的图象()A.向左平移个单位,再向下平移个单位B.向左平移个单位,再向上平移个单位C.向右平移个单位,再向上平移个单位D.向右平移个单位,再向下平移个单位二、填空题(每小题3分,共24分)11.已知是方程的一个根,则方程另一个根是________.12.如图,已知中,,D是线段AC上一点(不与A,C重合),连接BD,将沿AB翻折,使点D落在点E处,延长BD与EA的延长线交于点F,若是直角三角形,则AF的长为_________.13.如图所示,半圆O的直径AB=4,以点B为圆心,为半径作弧,交半圆O于点C,交直径AB于点D,则图中阴影部分的面积是_____________.14.对于实数a和b,定义一种新的运算“*”,,计算=______________________.若恰有三个不相等的实数根,记,则k的取值范围是_______________________.15.在本赛季比赛中,某运动员最后六场的得分情况如下:则这组数据的极差为_______.16.方程x2=2的解是.17.在一个不透明的袋子中装有8个红球和16个白球,它们只有颜色上的区别,现从袋中取走若干个红球,并放入相同数量的白球,搅拌均匀后,要使从袋中任意摸出一个球是红球的概率是,则取走的红球为_______个.18.如图,点A、B分别在y轴和x轴正半轴上滑动,且保持线段AB=4,点D坐标为(4,3),点A关于点D的对称点为点C,连接BC,则BC的最小值为_____.三、解答题(共66分)19.(10分)为迎接年中、日、韩三国青少年橄榄球比赛,南雅中学计划对面积为运动场进行塑胶改造.经投标,由甲、乙两个工程队来完成,已知甲队每天能改造的面积是乙队每天能改造面积的倍,并且在独立完成面积为的改造时,甲队比乙队少用天.(1)求甲、乙两工程队每天能完成塑胶改造的面积;(2)设甲工程队施工天,乙工程队施工天,刚好完成改造任务,求与的函数解析式;(3)若甲队每天改造费用是万元,乙队每天改造费用是万元,且甲、乙两队施工的总天数不超过天,如何安排甲、乙两队施工的天数,使施工总费用最低?并求出最低的费用.20.(6分)若的整数部分为,小数部分为;(1)直接写出_________,__________;(2)计算的值.21.(6分)某水果商场经销一种高档水果,原价每千克25元,连续两次涨价后每千克水果现在的价格为36元.(1)若每次涨价的百分率相同.求每次涨价的百分率;(2)若进价不变,按现价售出,每千克可获利15元,但该水果出现滞销,商场决定降价m元出售,同时把降价的幅度m控制在的范围,经市场调查发现,每天销售量(千克)与降价的幅度m(元)成正比例,且当时,.求与m的函数解析式;(3)在(2)的条件下,若商场每天销售该水果盈利元,为确保每天盈利最大,该水果每千克应降价多少元?22.(8分)如图,是规格为8×8的正方形网格,请在所给的网格中按下列要求操作.(1)在网格中建立平面直角坐标系,使点的坐标为,点的坐标为.(2)在第二象限内的格点上画一点,使点与线段组成一个以为底的等腰三角形,且腰长是无理数.求点的坐标及的周长(结果保留根号).(3)将绕点顺时针旋转90°后得到,以点为位似中心将放大,使放大前后的位似比为1:2,画出放大后的的图形.23.(8分)如图,点、、都在半径为的上,过点作交的延长线于点,连接,已知.(1)求证:是的切线;(2)求图中阴影部分的面积.24.(8分)在一个不透明的盒子中装有4张卡片.4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是:;(2)先从盒子中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率(请用画树状图或列表等方法求解).25.(10分)我国南宋数学家杨辉在1275年提出的一个问题:“直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步.”其大意是:一矩形田地面积为864平方步,宽比长少12步,问该矩形田地的长和宽各是多少步?请用已学过的知识求出问题的解.26.(10分)如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF,从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51)
参考答案一、选择题(每小题3分,共30分)1、C【分析】由题意得∠B=∠C=45°,∠G=∠EAF=45°,推出△ACE∽△ABF,得到∠AEC=∠BAF,根据相似三角形的性质得到
,于是得到结论.【题目详解】解:如图:由题意得∠B=∠C=45°,∠G=∠EAF=45°,∵∠AFE=∠C+∠CAF=45°+∠CAF,∠CAE=45°+∠CAF,∴∠AFB=∠CAE,∴△ACE∽△ABF,∴∠AEC=∠BAF,∴△ABF∽△CAE,∴,又∵△ABC是等腰直角三角形,且BC=2,∴AB=AC=,又BF=x,CE=y,∴,即xy=2,(1<x<2).故选:C.【题目点拨】本题考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质,本题中求证△ABF∽△ACE是解题的关键.2、D【分析】计算最大数19与最小数8的差即可.【题目详解】19-8=11,故选:D.【题目点拨】此题考查极差,即一组数据中最大值与最小值的差.3、C【分析】找到两个抛物线的顶点,根据抛物线的顶点即可判断是如何平移得到.【题目详解】解:∵y=(x-1)2+1的顶点坐标为(1,1),y=x2的顶点坐标为(0,0),
∴将抛物线y=x2向右平移1个单位,再向上平移1个单位,可得到抛物线y=(x-1)2+1.
故选:C.【题目点拨】本题考查了二次函数图象与几何变换,解答时注意抓住点的平移规律和求出关键点顶点坐标.4、D【分析】如图,设AC与PB的交点为N,根据直角三角形的性质得到,根据相似三角形的判定定理得到△BAE∽△CAD,故①正确;根据相似三角形的性质得到∠BEA=∠CDA,推出△PME∽△AMD,根据相似三角形的性质得到MP•MD=MA•ME,故②正确;由相似三角形的性质得到∠APM=∠DEM=90,根据垂直的定义得到AP⊥CD,故④正确;同理:△APN∽△BCN,△PNC∽△ANB,于是得到图中相似三角形有6对,故③不正确.【题目详解】如图,设AC与PB的交点为N,∵∠ABC=∠AED=90,∠BAC=∠DAE=30,∴,∠BAE=30+∠CAE,∠CAD=30+∠CAE,∴∠BAE=∠CAD,∴△BAE∽△CAD,故①正确;∵△BAE∽△CAD,∴∠BEA=∠CDA,∵∠PME=∠AMD,∴△PME∽△AMD,∴,∴MP•MD=MA•ME,故②正确;∴,∵∠PMA=∠EMD,∴△APM∽△DEM,∴∠APM=∠DEM=90,∴AP⊥CD,故④正确;同理:△APN∽△BCN,△PNC∽△ANB,∵△ABC∽△AED,∴图中相似三角形有6对,故③不正确;故选:D.【题目点拨】本题考查了相似三角形的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.5、B【解题分析】根据轴对称图形与中心对称图形的概念求解.【题目详解】A、是轴对称图形,不是中心对称图形,故此选项错误;
B、是轴对称图形,也是中心对称图形,故此选项正确;
C、不是轴对称图形,是中心对称图形,故此选项错误;
D、不是轴对称图形,是中心对称图形,故此选项错误.
故选B.【题目点拨】考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6、A【分析】主视图:从物体正面观察所得到的图形,由此观察即可得出答案.【题目详解】从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为A.【题目点拨】本题考查三视图的知识,主视图是从物体的正面看得到的视图.7、A【分析】根据只有符号不同的两个数是互为相反数解答即可.【题目详解】解:-1的相反数是1.故选A.【题目点拨】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.8、D【分析】过点O作OC⊥AB于C,连接OA,根据勾股定理求出AC长,根据垂径定理得出AB=2CA,代入求出即可.【题目详解】过点O作OC⊥AB于C,连接OA,则OC=6,OA=10,由勾股定理得:,∵OC⊥AB,OC过圆心O,∴AB=2AC=16,故选D.【题目点拨】本题主要考查了勾股定理和垂径定理等知识点的应用,正确作出辅助线是关键.9、B【解题分析】y=x2-2x+3=(x-1)2+2,将其向上平移2个单位得:y=(x-1)2+2+2=(x-1)2+4,再向左平移3个单位得:y=(x-1+3)2+4=(x-1+3)2+4=(x+2)2+4=x2+4x+8,所以b=4,c=8,所以b+c=12,故选B.10、C【分析】根据抛物线顶点的变换规律作出正确的选项.【题目详解】抛物线的顶点坐标是,抛物线线的顶点坐标是,所以将顶点向右平移个单位,再向上平移个单位得到顶点,即将函数的图象向右平移个单位,再向上平移个单位得到函数的图象.故选:C.【题目点拨】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.二、填空题(每小题3分,共24分)11、1【分析】设方程另一个根为x1,根据根与系数的关系得到-1•x1=-1,然后解一次方程即可.【题目详解】设方程另一个根为x1,根据题意得-1•x1=-1,所以x1=1.故答案为1.【题目点拨】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1x2=.12、或【分析】分别讨论∠E=90°,∠EBF=90°两种情况:①当∠E=90°时,由折叠性质和等腰三角形的性质可推出△BDC为等腰直角三角形,再求出∠ABD=∠ABE=22.5°,进而得到∠F=45°,推出△ADF为等腰直角三角形即可求出斜边AF的长度;②当∠EBF=90°时,先证△ABD∽△ACB,利用对应边成比例求出AD和CD的长,再证△ADF∽△CDB,利用对应边成比例求出AF.【题目详解】①当∠E=90°时,由折叠性质可知∠ADB=∠E=90°,如图所示,在△ABC中,CA=CB=4,∠C=45°∴∠ABC=∠BAC==67.5°∵∠BDC=90°,∠C=45°∴△BCD为等腰直角三角形,∴CD=BC=,∠DBC=45°∴∠EBA=∠DBA=∠ABC-∠DBC=67.5°-45°=22.5°∴∠EBF=45°∴∠F=90°-45°=45°∴△ADF为等腰直角三角形∴AF=②当∠EBF=90°时,如图所示,由折叠的性质可知∠ABE=∠ABD=45°,∵∠BAD=∠CAB∴△ABD∽△ACB∴由情况①中的AD=,BD=,可得AB=∴AD=∴CD=∵∠DBC=∠ABC-∠ABD=22.8°∵∠E=∠ADB=∠C+∠DBC=67.5°∴∠F=22.5°=∠DBC∴EF∥BC∴△ADF∽△CDB∴∴∵∠E=∠BDA=∠C+∠DBC=45°+67.5°-∠ABD=112.5°-∠ABD,∠EBF=2∠ABD∴∠E+∠EBF=112.5°+∠ABD>90°∴∠F不可能为直角综上所述,AF的长为或.故答案为:或.【题目点拨】本题考查了等腰三角形的性质,折叠的性质,勾股定理,相似三角形的判定和性质,熟练掌握折叠前后对应角相等,分类讨论利用相似三角形的性质求边长是解题的关键.13、【解题分析】解:连接OC,CB,过O作OE⊥BC于E,∴BE=BC==.∵OB=AB=2,∴OE=1,∴∠B=30°,∴∠COA=60°,===.故答案为.14、【分析】分当时,当时两种情况,分别代入新定义的运算算式即可求解;设y=,绘制其函数图象,根据图象确定m的取值范围,再求k的取值范围.【题目详解】当时,即时,当时,即时,;设y=,则y=其函数图象如图所示,抛物线顶点,根据图象可得:当时,恰有三个不相等的实数根,其中设,为与的交点,为与的交点,,,时,,故答案为:;【题目点拨】本题主要考查新定义问题,解题关键是将方程的解的问题转化为函数的交点问题.15、1【分析】极差是指一组数据中最大数据与最小数据的差.极差=最大值−最小值,根据极差的定义即可解答.【题目详解】解:由题意可知,极差为28−12=1,
故答案为:1.【题目点拨】本题考查了极差的定义,解题时牢记定义是关键.16、±【解题分析】试题分析:根据二次根式的性质或一元二次方程的直接开平方法解方程即可求得x=±.考点:一元二次方程的解法17、1【解题分析】设取走的红球有x个,根据概率公式可得方程,解之可得答案.【题目详解】设取走的红球有x个,根据题意,得:,解得:x=1,即取走的红球有1个,故答案为:1.【题目点拨】此题主要考查了概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.18、1【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于1.【题目详解】解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵点D坐标为(4,3),∴OD==5,∵Rt△ABO中,OE=AB=×4=2,∴当O,E,D在同一直线上时,DE的最小值等于OD﹣OE=3,∴BC的最小值等于1,故答案为:1.【题目点拨】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理.三、解答题(共66分)19、(1)甲、乙工程队每天能完成绿化的面积分别是、;(2);(3)安排甲队施工天,乙队施工天,施工总费用最低,最低费用为万元.【分析】(1)设乙工程队每天能完成绿化的面积是m2,根据在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天,列方程求解;(2)根据题意得到100x+50y=2400,整理得:y=-2x+48,即可解答;(3)根据甲乙两队施工的总天数不超过30天,得到x≥18,设施工总费用为w元,根据题意得:,根据一次函数的性质,即可解答.【题目详解】(1)设乙工程队每天能完成绿化面积是,根据题意得:,解得:,经检验,是原方程的解,则甲工程队每天能完成绿化的面积是答:甲、乙工程队每天能完成绿化的面积分别是、;(2)根据题意得:,整理得:,∴y与x的函数解析式为:.(3)∵甲乙两队施工的总天数不超过30天,
∴,∴,解得:,设施工总费用为元,根据题意得:,∵,∴随的增大而增大,当时,有最小值,最小值为万元,此时,,答:安排甲队施工天,乙队施工天,施工总费用最低,最低费用为万元.【题目点拨】本题考查了分式方程、一元一次不等式和一次函数的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程和不等式求解.掌握利用一次函数的增减性求最值的方法.20、(1),;(2).【分析】先根据算术平方根的定义得到1<<2,则x=1,y=-1,然后把x、y的值代入,再进行二次根式的混合运算即可.【题目详解】解:解:∵1<3<4,
∴1<<2,
∴x=1,y=-1,(2)当时,原式【题目点拨】本题考查估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.也考查二次根式的混合运算.21、(1)20%;(2)(3)商场为了每天盈利最大,每千克应降价7元【分析】(1)设每次涨价的百分率为x,根据题意列出方程即可;(2)根据题意列出函数表达式即可;(3)根据等量关系列出函数解析式,然后根据解析式的性质,求出最值即可.【题目详解】解:(1)设每次涨价的百分率为x,根据题意得:25(1+x)2=36,解得:(不合题意舍去)答:每次涨价的百分率20%;(2)设,把,代入得,∴k=30,∴y与m的函数解析式为;(3)依题有,∵抛物线的开口向下,对称轴为,∴当时,w随m的增大而增大,又,∴当时,每天盈利最大,答:商场为了每天盈利最大,每千克应降价7元.【题目点拨】本题主要考查了一元二次方程的应用,二次函数的应用,根据题意得出等量关系是解题关键.22、(1)图见解析;(2),周长为;(3)图见解析.【分析】(1)根据平面直角坐标系点的特征作图即可得出答案;(2)根据等腰三角形的定义计算即可得出答案;(3)根据旋转和位似的性质即可得出答案.【题目详解】解:(1)如图所示:(2)∵,∴∴周长为;(3)如图所示,即为所求.【题目点拨】本题考查的是尺规作图,涉及到了两点间的距离公式以及位似的相关性质,需要熟练掌握.23、(1)证明
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 纱线采购知识培训
- 新生儿的护理及观察要点
- 物流车辆知识培训
- 吉林省通化市外国语学校2025年七下英语期中经典试题含答案
- 人教版五年级上册数学3除数是整数的小数除法课件
- Unit 3 Teenage problems reading课件 牛津译林版九年级上册
- 2025年大健康产业发展顾问职业资格考试试卷及答案
- 2025年电子商务专业知识考试卷及答案
- 2025遂宁中考数学真题试卷
- 肺气肿的常规护理
- 2025年湖北高考真题化学试题(解析版)
- 2025-2030年中国停车场行业市场现状供需分析及投资评估规划分析研究报告
- 林业碳汇项目开发流程与审核要点
- 安徽宣城职业技术学院招聘笔试真题2024
- 2025西山煤电井下岗位高校毕业生招聘500人(山西)笔试参考题库附带答案详解
- 排污许可证申请流程
- 药具培训培训试题及答案
- 重庆市大渡口区2023-2024学年四年级下学期数学期末测试卷(含答案)
- 2025年高考全国一卷写作范文4篇
- 坚持严格阵地管理制度
- 2025年广西公需科目答案03
评论
0/150
提交评论