2024届黑龙江省龙江县九年级数学第一学期期末监测试题含解析_第1页
2024届黑龙江省龙江县九年级数学第一学期期末监测试题含解析_第2页
2024届黑龙江省龙江县九年级数学第一学期期末监测试题含解析_第3页
2024届黑龙江省龙江县九年级数学第一学期期末监测试题含解析_第4页
2024届黑龙江省龙江县九年级数学第一学期期末监测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省龙江县九年级数学第一学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.在△ABC中,∠C90°.若AB3,BC1,则的值为()A. B. C. D.2.如图,由一些完全相同的小正方体搭成的几何体的左视图和俯视图,则这个几何体的主视图不可能是()A. B. C. D.3.如图,中,点,分别是边,上的点,,点是边上的一点,连接交线段于点,且,,,则S四边形BCED()A. B. C. D.4.小明从图所示的二次函数的图象中,观察得出了下面四条信息:①;②<0;③;④方程必有一个根在-1到0之间.你认为其中正确信息的个数有()A.1个 B.2个 C.3个 D.4个5.下列说法中,正确的是()A.如果k=0,是非零向量,那么k=0 B.如果是单位向量,那么=1C.如果||=||,那么=或=﹣ D.已知非零向量,如果向量=﹣5,那么∥6.在平面直角坐标系中,对于二次函数,下列说法中错误的是()A.的最小值为1B.图象顶点坐标为(2,1),对称轴为直线C.当时,的值随值的增大而增大,当时,的值随值的增大而减小D.它的图象可以由的图象向右平移2个单位长度,再向上平移1个单位长度得到7.如图,矩形ABCD中,AB=4,AD=8,E为BC的中点,F为DE上一动点,P为AF中点,连接PC,则PC的最小值是()A.4 B.8 C.2 D.48.如图,有一块三角形余料ABC,它的面积为36,边cm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上,则加工成的正方形零件的边长为()cmA.8 B.6 C.4 D.39.将抛物线y=2x2经过怎样的平移可得到抛物线y=2(x+3)2+4(

)A.先向左平移3个单位,再向上平移4个单位 B.先向左平移3个单位,再向下平移4个单位C.先向右平移3个单位,再向上平移4个单位 D.先向右平移3个单位,再向下平移4个单位10.能说明命题“如果两个角互补,那么这两个角一个是锐角,另一个是钝角”为假命题的两个角是()A.120°,60° B.95°,105° C.30°,60° D.90°,90°11.下列事件是必然事件的是()A.抛掷一枚硬币四次,有两次正面朝上B.打开电视频道,正在播放《在线体育》C.射击运动员射击一次,命中十环D.方程x2﹣2x﹣1=0必有实数根12.若抛物线y=﹣x2+bx+c经过点(﹣2,3),则2c﹣4b﹣9的值是()A.5B.﹣1C.4D.18二、填空题(每题4分,共24分)13.由n个相同的小正方体堆成的几何体,其视图如下所示,则n的最大值是_____.14.如图,在边长为6的等边△ABC中,D为AC上一点,AD=2,P为BD上一点,连接CP,以CP为边,在PC的右侧作等边△CPQ,连接AQ交BD延长线于E,当△CPQ面积最小时,QE=____________.15.北京时间2019年4月10日21时,人类首张黑洞照片面世,该黑洞位于室女座一个巨椭圆星系M87的中心,距离地球约55000000年,那么55000000用科学记数法表示为_______.16.一组数据,,,,的众数是,则=_________.17.计算__________.18.已知扇形的圆心角为90°,弧长等于一个半径为5cm的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm.三、解答题(共78分)19.(8分)一个不透明的口袋里装有分别标有汉字“魅”、“力”、“宜”、“昌”的四个个球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,球上的汉字刚好是“宜”的概率为多少?(2)甲同学从中任取一球,记下汉字后放回袋中,然后再从袋中任取一球,请用画树图成列表的方法求出甲同学取出的两个球上的汉字恰能组成“魅力”或“宜昌”的概率p甲;(3)乙同学从中任取一球,不放回,再从袋中任取一球,请求出乙同学取出的两个球上的汉字恰能组成“魅力”或“宜昌”的概率p乙,并指出p甲、p乙的大小关系.20.(8分)如图,已知△ABC,以AC为直径的⊙O交AB于点D,点E为弧AD的中点,连接CE交AB于点F,且BF=BC,(1)求证:BC是⊙O的切线;(2)若⊙O的半径为2,=,求CE的长.21.(8分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.求出每天的销售利润元与销售单价元之间的函数关系式;求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?每天的总成本每件的成本每天的销售量22.(10分)如图,在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,DE⊥BC,垂足为E.(1)求证:DE是⊙O的切线;(2)若DG⊥AB,垂足为点F,交⊙O于点G,∠A=35°,⊙O半径为5,求劣弧DG的长.(结果保留π)23.(10分)某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于60元,经市场调查,每天的销售量y(单位:千克)与每千克售价x(单位:元)满足一次函数关系,部分数据如下表:售价x(元/千克)455060销售量y(千克)11010080(1)求y与x之间的函数表达式;(2)设商品每天的总利润为w(单位:元),则当每千克售价x定为多少元时,超市每天能获得的利润最大?最大利润是多少元?24.(10分)如图,点D、E分别在的边AB、AC上,若,,.求证:∽;已知,AD::3,,求AC的长.25.(12分)如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及点B的坐标;(2)求的值.26.小王同学在地质广场上放风筝,如图风筝从处起飞,几分钟后便飞达处,此时,在延长线上处的小张同学发现自己的位置与风筝和广场边旗杆的顶点在同一直线上,已知旗杆高为10米,若在处测得旗杆顶点的仰角为30〫,处测得点的仰角为45〫,若在处背向旗杆又测得风筝的仰角为75〫,绳子在空中视为一条线段,求绳子为多少米?(结果保留根号)

参考答案一、选择题(每题4分,共48分)1、A【解题分析】∵在△ABC中,∠C=90°,AB=3,BC=1,∴sinA=.故选A.2、A【分析】由左视图可得出这个几何体有2层,由俯视图可得出这个几何体最底层有4个小正方体.分情况讨论即可得出答案.【题目详解】解:由题意可得出这个几何体最底层有4个小正方体,有2层,当第二层第一列有1个小正方体时,主视图为选项B;当第二层第二列有1个小正方体时,主视图为选项C;当第二层第一列,第二列分别有1个小正方体时,主视图为选项D;故选:A.【题目点拨】本题考查的知识点是简单几何体的三视图,根据所给三视图能够还原几何体是解此题的关键.3、B【分析】由,,求得GE=4,由可得△ADG∽△ABH,△AGE∽△AHC,由相似三角形对应成比例可得,得到HC=5,再根据相似三角形的面积比等于相似比的平方可得,S△ABC=40.5,再减去△ADE的面积即可得到四边形BCED的面积.【题目详解】解:∵,,∴GE=4∵∴△ADG∽△ABH,△AGE∽△AHC∴即,解得:HC=6∵DG:GE=2:1∴S△ADG:S△AGE=2:1∵S△ADG=12∴S△AGE=6,S△ADE=S△ADG+S△AGE=18∵∴△ADE∽△ABC∴S△ADE:S△ABC=DE2:BC2解得:S△ABC=40.5S四边形BCED=S△ABC-S△ADE=40.5-18=22.5故答案选:B.【题目点拨】本题考查相似三角形的性质和判定.4、C【题目详解】观察图象可知,抛物线的对称轴为x=,即,所以2a+3b=0,即①正确;二次函数的图象与x轴有两个交点,所以>0,②错误;由图象可知,当x=-1时,y>0,即a-b+c>0,③正确;由图象可知,二次函数的图象与x轴的一个交点在0和-1之间,所以方程必有一个根在-1到0之间,④正确.正确的结论有3个,故选C.【题目点拨】本题主要考查了图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.5、D【分析】根据平面向量的性质一一判断即可.【题目详解】解:A、如果k=0,是非零向量,那么k=0,错误,应该是k=.B、如果是单位向量,那么=1,错误.应该是=1.C、如果||=||,那么=或=﹣,错误.模相等的向量,不一定平行.D、已知非零向量,如果向量=﹣5,那么∥,正确.故选:D.【题目点拨】本题主要考查平面向量,平行向量等知识,解题的关键是熟练掌握平面向量的基本知识.6、C【分析】根据题目中的函数解析式,可以判断各个选项中的说法是否正确.【题目详解】解:二次函数,,∴该函数的图象开口向上,对称轴为直线,顶点为,当时,有最小值1,当时,的值随值的增大而增大,当时,的值随值的增大而减小;故选项A、B的说法正确,C的说法错误;根据平移的规律,的图象向右平移2个单位长度得到,再向上平移1个单位长度得到;故选项D的说法正确,故选C.【题目点拨】本题考查二次函数的性质、二次函数的最值,二次函数图象与几何变换,解答本题的关键是明确题意,利用二次函数的性质解答.7、D【分析】根据中位线定理可得出点点P的运动轨迹是线段P1P2,再根据垂线段最短可得当CP⊥P1P2时,PC取得最小值;由矩形的性质以及已知的数据即可知CP1⊥P1P2,故CP的最小值为CP1的长,由勾股定理求解即可.【题目详解】解:如图:当点F与点D重合时,点P在P1处,AP1=DP1,当点F与点E重合时,点P在P2处,EP2=AP2,∴P1P2∥DE且P1P2=DE当点F在ED上除点D、E的位置处时,有AP=FP由中位线定理可知:P1P∥DF且P1P=DF∴点P的运动轨迹是线段P1P2,∴当CP⊥P1P2时,PC取得最小值∵矩形ABCD中,AB=4,AD=8,E为BC的中点,∴△ABE、△CDE、△DCP1为等腰直角三角形,DP1=2∴∠BAE=∠DAE=∠DP1C=45°,∠AED=90°∴∠AP2P1=90°∴∠AP1P2=45°∴∠P2P1C=90°,即CP1⊥P1P2,∴CP的最小值为CP1的长在等腰直角CDP1中,DP1=CD=4,∴CP1=4∴PB的最小值是4.故选:D.【题目点拨】本题考查轨迹问题、矩形的性质等知识,解题的关键是学会利用特殊位置解决问题,有难度.8、C【分析】先求出△ABC的高,再根据正方形边的平行关系,得出对应的相似三角形,即△AEF∽△ABC,从而根据相似三角形的性质求出正方形的边长.【题目详解】作AH⊥BC,交BC于H,交EF于D.设正方形的边长为xcm,则EF=DH=xcm,∵△AB的面积为36,边cm,∴AH=36×2÷12=6.∵EF∥BC,∴△AEF∽△ABC,∴,∴,∴x=4.故选C.【题目点拨】本题考查综合考查相似三角形性质的应用以及正方形的有关性质,解题的关键是根据正方形的性质得到相似三角形.9、A【分析】抛物线的平移问题,实质上是顶点的平移,原抛物线的顶点为(0,0),平移后的抛物线顶点为(-3,1),由顶点的平移规律确定抛物线的平移规律.【题目详解】抛物线y=2x2的顶点坐标为(0,0),抛物线y=2(x+3)2+1的顶点坐标为(-3,1),点(0,0)需要先向左平移3个单位,再向上平移1个单位得到点(-3,1).∴抛物线y=2x2先向左平移3个单位,再向上平移1个单位得到抛物线y=2(x+3)2+1.故选A.【题目点拨】在寻找图形的平移规律时,往往需要把图形的平移规律理解为某个特殊点的平移规律.10、D【分析】根据两个直角互补的定义即可判断.【题目详解】解:∵互补的两个角可以都是直角,∴能说明命题“如果两个角互补,那么这两个角一定是锐角,另一个是钝角”为假命题的两个角是90°,90°,故选:D.考点:本题考查的是两角互补的定义点评:解答本题的关键是熟练掌握两角互补的定义,即若两个角的和是180°,则这两个角互补.11、D【分析】根据必然事件的定义逐项进行分析即可做出判断,必然事件是一定会发生的事件.【题目详解】A、抛掷一枚硬币,四次中有两次正面朝上是随机事件,故本选项错误;B、打开电视频道,正在播放《在线体育》是随机事件,故本选项错误;C、射击运动员射击一次,命中十环是随机事件,故本选项错误;D.方程中必有实数根,是必然事件,故本选项正确.故选:D.【题目点拨】解决本题要正确理解必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点有:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12、A【解题分析】∵抛物线y=﹣x2+bx+c经过点(﹣2,3),∴-4-2b+c=3,即c-2b=7,∴2c-4b-9=2(c-2b)-9=14-9=5.故选A.二、填空题(每题4分,共24分)13、1【分析】根据主视图和俯视图得出几何体的可能堆放,从而即可得出答案.【题目详解】综合主视图和俯视图,底面最多有个,第二层最多有个,第三层最多有个则n的最大值是故答案为:1.【题目点拨】本题考查了三视图中的主视图和俯视图,掌握三视图的相关概念是解题关键.14、【分析】如图,过点D作DF⊥BC于F,由“SAS”可证△ACQ≌△BCP,可得AQ=BP,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD的长,由锐角三角函数可求BP的长,由相似三角形的性质可求AE的长,即可求解.【题目详解】如图,过点D作DF⊥BC于F,∵△ABC,△PQC是等边三角形,∴BC=AC,PC=CQ,∠BCA=∠PCQ=60°,∴∠BCP=∠ACQ,且AC=BC,CQ=PC,∴△ACQ≌△BCP(SAS)∴AQ=BP,∠CAQ=∠CBP,∵AC=6,AD=2,∴CD=4,∵∠ACB=60°,DF⊥BC,∴∠CDF=30°,∴CF=CD=2,DF=CF÷tan30°=CF=2,∴BF=4,∴BD===2,∵△CPQ是等边三角形,∴S△CPQ=CP2,∴当CP⊥BD时,△CPQ面积最小,∴cos∠CBD=,∴,∴BP=,∴AQ=BP=,∵∠CAQ=∠CBP,∠ADE=∠BDC,∴△ADE∽△BDC,∴,∴,∴AE=,∴QE=AQ−AE=.故答案为;.【题目点拨】本题考查了全等三角形的判定和性质,等边三角形的性质,锐角三角函数,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,求出BP的长是本题的关键.15、【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】解:将55000000用科学记数法表示为:5.5×1,故答案为:5.5×1.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16、【解题分析】根据众数的概念求解可得.【题目详解】∵数据4,3,x,1,1的众数是1,∴x=1,故答案为1.【题目点拨】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.17、【分析】先把特殊角的三角函数值代入原式,再计算即得答案.【题目详解】解:原式=.故答案为:.【题目点拨】本题考查了特殊角的三角函数值,属于基础题型,熟记特殊角的三角函数值、正确计算是关键.18、【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【题目详解】解:设扇形半径为R,根据弧长公式得,∴R=20,根据勾股定理得圆锥的高为:.故答案为:.【题目点拨】本题考查弧长公式,及圆锥的高与母线、底面半径之间的关系,底面周长等于扇形的弧长这个等量关系和勾股定理是解答此题的关键.三、解答题(共78分)19、(1);(2);(3).【分析】(1)由一个不透明的口袋里装有分别标有汉字“魅”、“力”、“宜”、“昌”的四个小球,除汉字不同之外,小球没有任何区别,直接利用概率公式求解即可求得答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与取出的两个球上的汉字恰能组成“魅力”或“宜昌”的情况,再利用概率公式即可求得答案;(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与取出的两个球上的汉字恰能组成“魅力”或“宜昌”的情况,再利用概率公式即可求得答案.【题目详解】解:(1)从中任取一个球,球上的汉字刚好是“宜”的概率为;(2)列表如下:魅力宜昌魅(魅,魅)(力,魅)(宜,魅)(昌,魅)力(魅,力)(力,力)(宜,力)(昌,力)宜(魅,宜)(力,宜)(宜,宜)(昌,宜)昌(魅,昌)(力,昌)(宜,昌)(昌,昌)所有等可能结果有16种,其中取出的两个球上的汉字恰能组成“魅力”或“宜昌”的有4种结果,所以取出的两个球上的汉字恰能组成“魅力”或“宜昌”的概率;(3)列表如下:魅力宜昌魅﹣﹣﹣(力,魅)(宜,魅)(昌,魅)力(魅,力)﹣﹣﹣(宜,力)(昌,力)宜(魅,宜)(力,宜)﹣﹣﹣(昌,宜)昌(魅,昌)(力,昌)(宜,昌)﹣﹣﹣所有等可能的情况有12种,取出的两个球上的汉字恰能组成“魅力”或“宜昌”的有4种结果,所以取出的两个球上的汉字恰能组成“魅力”或“宜昌”的概率,所以.【题目点拨】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20、(1)证明见详解;(2).【分析】(1)连接AE,求出∠EAD+∠AFE=90°,推出∠BCE=∠BFC,∠EAD=∠ACE,求出∠BCE+∠ACE=90°,根据切线的判定推出即可.

(2)根据AC=4,=,求出BC=3,AB=5,BF=3,AF=2,根据∠EAD=∠ACE,∠E=∠E证△AEF∽△CEA,推出EC=2EA,设EA=x,EC=2x,由勾股定理得出,求出即可.【题目详解】(1)答:BC与⊙O相切.

证明:连接AE,

∵AC是⊙O的直径

∴∠E=90°,

∴∠EAD+∠AFE=90°,

∵BF=BC,

∴∠BCE=∠BFC=∠AFE,

∵E为弧AD中点,

∴∠EAD=∠ACE,

∴∠BCE+∠ACE=∠EAD+∠AFE=90°,

∴AC⊥BC,

∵AC为直径,

∴BC是⊙O的切线.

(2)解:∵⊙O的半为2,

∴AC=4,

∵=∴BC=3,AB=5,

∴BF=3,AF=5-3=2,

∵∠EAD=∠ACE,∠E=∠E,

∴△AEF∽△CEA,

∴∴EC=2EA,

设EA=x,则有EC=2x,

由勾股定理得:,∴(负数舍去),

即.【题目点拨】本题考查了切线的判定,等腰三角形的性质,勾股定理,相似三角形的性质和判定的应用,主要考查学生的推理能力.21、;当时,;销售单价应该控制在82元至90元之间.【分析】(1)根据每天销售利润=每件利润×每天销售量,可得出函数关系式;(2)将(1)的关系式整理为顶点式,根据二次函数的顶点,可得到答案;(3)先求出利润为4000元时的售价,再结合二次函数的增减性可得出答案.【题目详解】解:由题意得:;,抛物线开口向下.,对称轴是直线,当时,;当时,,解得,.当时,每天的销售利润不低于4000元.由每天的总成本不超过7000元,得,解得.,,销售单价应该控制在82元至90元之间.【题目点拨】本题考查二次函数的应用,熟练掌握二次函数的图像与性质是解题的关键.22、(1)见解析;(2).【分析】(1)连接BD,OD,求出OD∥BC,推出OD⊥DE,根据切线判定推出即可.(2)求出∠BOD=∠GOB,从而求出∠BOD的度数,根据弧长公式求出即可.【题目详解】解:(1)证明:连接BD、OD,∵AB是⊙O直径,∴∠ADB=90°.∴BD⊥AC.∵AB=BC,∴AD=DC.∵AO=OB,∴DO∥BC.∵DE⊥BC,∴DE⊥OD.∵OD为半径,∴DE是⊙O切线.(2)连接OG,∵DG⊥AB,OB过圆心O,∴弧BG=弧BD.∵∠A=35°,∴∠BOD=2∠A=70°.∴∠BOG=∠BOD=70°.∴∠GOD=14

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论