最全2013年全国中考数学试卷汇总_第1页
最全2013年全国中考数学试卷汇总_第2页
最全2013年全国中考数学试卷汇总_第3页
最全2013年全国中考数学试卷汇总_第4页
最全2013年全国中考数学试卷汇总_第5页
已阅读5页,还剩386页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2013年福建省泉州市晋江市中考数学试卷一、选择题(每小题3分,共21分.每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分.)1.-2013的绝对值是()A.2013B.-2013C.D.2.如图,已知直线a∥b,直线c与a、b分别交点于A、B,∠1=50°,则∠2=()A.40°B.50°C.100°D.130°3.计算:2x3•x2等于()A.2B.x5C.2x5D.2x64.已知关于x的方程2x-a-5=0的解是x=-2,则a的值为()A.1B.-1C.9D.-95.若反比例函数的图象上有两点P1(2,y1)和P2(3,y2),那么()A.y1<y2<0B.y1>y2>0C.y2<y1<0D.y2>y1>06.如图,是由一个长方体和一个圆锥体组成的立体图形,其正视图是()A.B.C.D.7.如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转角是()A.45°B.60°C.90°D.120°二、填空题(每小题4分,共40分.在答题卡上相应题目的答题区域内作答.)8.化简:-(-2)=________.9.因式分解:4-a2=________.10.从2013年起,泉州市财政每年将安排50000000元用于建设“美丽乡村”.将数据50000000用科学记数法表示为________.11.计算:.12.不等式组的解集是________.13.某班派5名同学参加数学竞赛,他们的成绩(单位:分)分别为:80,92,125,60,97.则这5名同学成绩的中位数是________分.14.正六边形的每个内角的度数是________度.15.如图,在△ABC中,AB=AC,△ABC的外角∠DAC=130°,则∠B=________°.16.若a+b=5,ab=6,则a-b=________.17.如图,在Rt△ABC中,∠C=90°,∠A=30°,.若动点D在线段AC上(不与点A、C重合),过点D作DE⊥AC交AB边于点E.(1)当点D运动到线段AC中点时,DE=________;(2)点A关于点D的对称点为点F,以FC为半径作⊙C,当DE=________或________时,⊙C与直线AB相切.三、解答题(共89分,在答题卡上相应题目的答题区域内作答)18.计算:.19.先化简,再求值:(x+3)2-x(x-5),其中.20.如图,BD是菱形ABCD的对角线,点E、F分别在边CD、DA上,且CE=AF.求证:BE=BF.21.一个不透明的口袋中装有4张卡片,卡片上分别标有数字1、-2、-3、4,它们除了标有的数字不同之外再也没有其它区别,小芳从盒子中随机抽取一张卡片.(1)求小芳抽到负数的概率;(2)若小明再从剩余的三张卡片中随机抽取一张,请你用树状图或列表法,求小明和小芳两人均抽到负数的概率.22.如图,在方格纸中(小正方形的边长为1),△ABC的三个顶点均为格点,将△ABC沿x轴向左平移5个单位长度,根据所给的直角坐标系(O是坐标原点),解答下列问题:(1)画出平移后的△A′B′C′,并直接写出点A′、B′、C′的坐标;(2)求出在整个平移过程中,△ABC扫过的面积.23.为了创建书香校园,切实引导学生多读书、乐读书、会读书、读好书,某校开展“好书伴我成长”的读书活动,为了解全校学生读书情况,随机调查了50名学生读书的册数,并将全部调查结果绘制成两幅不完整的统计图表.册数人数122133a4b51请根据图表提供的信息,解答下列问题:(1)表中的a=________,b=________,请你把条形统计图补充完整;(2)若该校共有2000名学生,请你根据样本数据,估计该校学生在本次活动中读书不少于3册的人数.24.为了让市民树立起“珍惜水、节约水、保护水”的用水理念,某市从2013年4月起,居民生活用水按阶梯式计算水价,水价计算方式如图所示,每吨水需另加污水处理费0.80元.已知小张家2013年4月份用水20吨,交水费49元;5月份用水25吨,交水费65.4元.(温馨提示:水费=水价+污水处理费)(1)m、n的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小张计划把6月份的水费控制在不超过家庭月收入的2%.若小张家的月收入为8190元,则小张家6月份最多能用水多少吨?25.将矩形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将矩形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.

(1)当m=3时,点B的坐标为________,点E的坐标为________;

(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.

(3)如图,若点E的纵坐标为-1,抛物线(a≠0且a为常数)的顶点落在△ADE的内部,求a的取值范围.26.如图,在平面直角坐标系xOy中,一动直线l从y轴出发,以每秒1个单位长度的速度沿x轴向右平移,直线l与直线y=x相交于点P,以OP为半径的⊙P与x轴正半轴交于点A,与y轴正半轴交于点B.设直线l的运动时间为t秒.(1)填空:当t=1时,⊙P的半径为________,OA=________,OB=________;(2)若点C是坐标平面内一点,且以点O、P、C、B为顶点的四边形为平行四边形.①请你直接写出所有符合条件的点C的坐标;(用含t的代数式表示)②当点C在直线y=x上方时,过A、B、C三点的⊙Q与y轴的另一个交点为点D,连接DC、DA,试判断△DAC的形状,并说明理由.

27.计算:2a2+3a2=________.28.已知∠1与∠2互余,∠1=55°,则∠2=________°.2013年甘肃省白银市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题意的选项字母填入题后的括号内.)1.3的相反数是()A.3B.-3C.D.2.下列运算中,结果正确的是()A.4a-a=3aB.a10÷a2=a5C.a2+a3=a5D.a3•a4=a123.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是()A.B.C.D.4.如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是()A.B.C.D.5.如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15°B.20°C.25°D.30°6.一元二次方程x2+x-2=0根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.分式方程的解是()A.x=-2B.x=1C.x=2D.x=38.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为()A.48(1-x)2=36B.48(1+x)2=36C.36(1-x)2=48D.36(1+x)2=489.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列五个结论中:①2a-b<0;②abc<0;③a+b+c<0;④a-b+c>0;⑤4a+2b+c>0,错误的个数有()A.1个B.2个C.3个D.4个10.如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是()A.B.C.D.二、填空题(本大题共8小题,每小题4分,共32分,把答案写在题中的横线上.)11.分解因式:x2-9=________.12.不等式2x+9≥3(x+2)的正整数解是________.13.等腰三角形的周长为16,其一边长为6,则另两边为________.14.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为________米.15.如图,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为________.(答案不唯一,只需填一个)16.若代数式的值为零,则x=________.17.已知⊙O1与⊙O2的半径分别是方程x2-4x+3=0的两根,且O1O2=t+2,若这两个圆相切,则t=________.18.现定义运算“★”,对于任意实数a、b,都有a★b=a2-3a+b,如:3★5=32-3×3+5,若x★2=6,则实数x的值是________.三、解答题(一)(本大题共5小题,共38分,解答时,应写出必要的文字说明、证明过程或演算步骤。)19.计算:.20.先化简,再求值:,其中.21.两个城镇A、B与两条公路l1、l2位置如图所示,电信部门需在C处修建一座信号反射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中,用尺规作图找出所有符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)22.某市在地铁施工期间,交管部门在施工路段设立了矩形路况警示牌BCEF(如图所示),已知立杆AB的高度是3米,从侧面D点测到路况警示牌顶端C点和底端B点的仰角分别是60°和45°,求路况警示牌宽BC的值.23.如图,一次函数与反比例函数的图象相交于点A,且点A的纵坐标为1.(1)求反比例函数的解析式;(2)根据图象写出当x>0时,一次函数的值大于反比例函数的值的x的取值范围.四、解答题(二)(本大题共5小题,共50分,解答时,应写出必要的文字说明、证明过程或演算步骤。)24.为了决定谁将获得仅有的一张科普报告入场劵,甲和乙设计了如下的摸球游戏:在不透明口袋中放入编号分别为1、2、3的三个红球及编号为4的一个白球,四个小球除了颜色和编号不同外,其它没有任何区别,摸球之前将袋内的小球搅匀,甲先摸两次,每次摸出一个球(第一次摸后不放回)把甲摸出的两个球放回口袋后,乙再摸,乙只摸一次且摸出一个球,如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分,如果乙摸出的球是白色,乙得1分,否则乙得0分,得分高的获得入场卷,如果得分相同,游戏重来.(1)运用列表或画树状图求甲得1分的概率;(2)请你用所学的知识说明这个游戏是否公平?25.在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.

请你根据统计图提供的信息,解答下列问题:

(1)本次调查中,一共调查了________名同学;

(2)条形统计图中,m=________,n=________;

(3)扇形统计图中,艺术类读物所在扇形的圆心角是________度;

(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?26.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.27.如图,在⊙O中,半径OC垂直于弦AB,垂足为点E.(1)若OC=5,AB=8,求tan∠BAC;(2)若∠DAC=∠BAC,且点D在⊙O的外部,判断直线AD与⊙O的位置关系,并加以证明.28.如图,在直角坐标系xOy中,二次函数y=x2+(2k-1)x+k+1的图象与x轴相交于O、A两点.

(1)求这个二次函数的解析式;

(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;

(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.2013年甘肃省兰州市中考数学试卷一、选择题(本大题共15小题,每小题4分,共60分)1.如图是由八个相同小正方体组合而成的几何体,则其左视图是()A.B.C.D.2.“兰州市明天降水概率是30%”,对此消息下列说法中正确的是()A.兰州市明天将有30%的地区降水B.兰州市明天将有30%的时间降水C.兰州市明天降水的可能性较小D.兰州市明天肯定不降水3.二次函数y=2(x-1)2+3的图象的顶点坐标是()A.(1,3)B.(-1,3)C.(1,-3)D.(-1,-3)4.⊙O1的半径为1cm,⊙O2的半径为4cm,圆心距O1O2=3cm,这两圆的位置关系是()A.相交B.内切C.外切D.内含5.当x>0时,函数的图象在()A.第四象限B.第三象限C.第二象限D.第一象限6.下列命题中是假命题的是()A.平行四边形的对边相等B.菱形的四条边相等C.矩形的对边平行且相等D.等腰梯形的对边相等7.某校九年级开展“光盘行动”宣传活动,各班级参加该活动的人数统计结果如下表,对于这组统计数据,下列说法中正确的是()班级1班2班3班4班5班6班人数526062545862A.平均数是58B.中位数是58C.极差是40D.众数是608.用配方法解方程x2-2x-1=0时,配方后得的方程为()A.(x+1)2=0B.(x-1)2=0C.(x+1)2=2D.(x-1)2=29.△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是()A.csinA=aB.bcosB=cC.atanA=bD.ctanB=b10.据调查,2011年5月兰州市的房价均价为7600/m2,2013年同期将达到8200/m2,假设这两年兰州市房价的平均增长率为x,根据题意,所列方程为()A.7600(1+x%)2=8200B.7600(1-x%)2=8200C.7600(1+x)2=8200D.7600(1-x)2=820011.已知A(-1,y1),B(2,y2)两点在双曲线上,且y1>y2,则m的取值范围是()A.m<0B.m>0C.D.12.图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A.3cmB.4cmC.5cmD.6cm13.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列说法不正确的是()A.b2-4ac>0B.a>0C.c>0D.<014.圆锥底面圆的半径为3m,其侧面展开图是半圆,则圆锥母线长为()A.3cmB.6cmC.9cmD.12cm15.如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为()A.B.C.D.二、填空题(本大题共5小题,每小题4分,共20分)16.某校决定从两名男生和三名女生中选出两名同学作为兰州国际马拉松赛的志愿者,则选出一男一女的概率是________.17.若|b-1|+=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是________.18.如图,量角器的直径与直角三角板ABC的斜边AB重合,其中量角器0刻度线的端点N与点A重合,射线CP从CA处出发沿顺时针方向以每秒3度的速度旋转,CP与量角器的半圆弧交于点E,第24秒,点E在量角器上对应的读数是________度.19.如图,在直角坐标系中,已知点A(-3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为________.20.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线与扇形OAB的边界总有两个公共点,则实数k的取值范围是________.三、解答题(本大题共8小题,共70分)21.(1)计算:(-1)2013-2-1+sin30°+(π-3.14)0(2)解方程:x2-3x-1=0.22.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)23.在兰州市开展的“体育、艺术2+1”活动中,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图甲、乙所示的条形统计图和扇形统计图.请你结合图中的信息解答下列问题:

(1)样本中喜欢B项目的人数百分比是________,其所在扇形统计图中的圆心角的度数是________;

(2)把条形统计图补充完整;

(3)已知该校有1000人,根据样本估计全校喜欢乒乓球的人数是多少?24.如图,在活动课上,小明和小红合作用一副三角板来测量学校旗杆高度.已知小明的眼睛与地面的距离(AB)是1.7m,他调整自己的位置,设法使得三角板的一条直角边保持水平,且斜边与旗杆顶端M在同一条直线上,测得旗杆顶端M仰角为45°;小红眼睛与地面的距离(CD)是1.5m,用同样的方法测得旗杆顶端M的仰角为30°.两人相距28米且位于旗杆两侧(点B、N、D在同一条直线上).求出旗杆MN的高度.(参考数据:,,结果保留整数.)25.已知反比例函数的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,-2),

(1)求这两个函数的关系式;

(2)观察图象,写出使得y1>y2成立的自变量x的取值范围;

(3)如果点C与点A关于x轴对称,求△ABC的面积.26.如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.27.已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.28.如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为,点M是抛物线C2:y=mx2-2mx-3m(m<0)的顶点.

(1)求A、B两点的坐标;

(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;

(3)当△BDM为直角三角形时,求m的值.2013年广东省佛山市中考数学试卷一、选择题(每小题3分,共30分)1.-2的相反数是()A.2B.-2C.D.2.下列计算正确的是()A.a3•a4=a12B.(a3)4=a7C.(a2b)3=a6b3D.a3÷a4=a(a≠0)3.并排放置的等底等高的圆锥和圆柱(如图)的主视图是()A.B.C.D.4.分解因式a3-a的结果是()A.a(a2-1)B.a(a-1)2C.a(a+1)(a-1)D.(a2+a)(a-1)5.化简的结果是()A.B.C.D.6.掷一枚有正反面的均匀硬币,正确的说法是()A.正面一定朝上B.反面一定朝上C.正面比反面朝上的概率大D.正面和反面朝上的概率都是0.57.如图,若∠A=60°,AC=20m,则BC大约是(结果精确到0.1m)()A.34.64mB.34.6mC.28.3mD.17.3m8.半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A.3B.4C.D.9.多项式1+2xy-3xy2的次数及最高次项的系数分别是()A.3,-3B.2,-3C.5,-3D.2,310.某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y与时间x的关系的大致图象是()A.B.C.D.二、填空题(每小题3分,共15分)11.数字9600000用科学记数法表示为________.12.方程x2-2x-2=0的解是________.13.在1,2,3,4四个数字中随机选两个不同的数字组成两位数,则组成的两位数大于40的概率是________.14.图中圆心角∠AOB=30°,弦CA∥OB,延长CO与圆交于点D,则∠BOD=________.15.命题“对顶角相等”的“条件”是________.三、解答题(第16~20每小题6分,第21~23每小题6分,第24小题10分,第25小题11分,共75分)16.计算:2×[5+(-2)3]-(-|-4|÷2-1).17.网格图中每个方格都是边长为1的正方形.若A,B,C,D,E,F都是格点,试说明△ABC∽△DEF.18.按要求化简:.19.已知两个语句:①式子2x-1的值在1(含1)与3(含3)之间;②式子2x-1的值不小于1且不大于3.请回答以下问题:(1)两个语句表达的意思是否一样(不用说明理由)?(2)把两个语句分别用数学式子表示出来.20.如图,圆锥的侧面展开图是一个半圆,求母线AB与高AO的夹角.参考公式:圆锥的侧面积S=πrl,其中r为底面半径,l为母线长.21.已知正比例函数y=ax与反比例函数的图象有一个公共点A(1,2).(1)求这两个函数的表达式;(2)画出草图,根据图象写出正比例函数值大于反比例函数值时x的取值范围.22.课本指出:公认的真命题称为公理,除了公理外,其他的真命题(如推论、定理等)的正确性都需要通过推理的方法证实.(1)叙述三角形全等的判定方法中的推论AAS;(2)证明推论AAS.要求:叙述推论用文字表达;用图形中的符号表达已知、求证,并证明,证明对各步骤要注明依据.23.在一次考试中,从全体参加考试的1000名学生中随机抽取了120名学生的答题卷进行统计分析.其中,某个单项选择题答题情况如下表(没有多选和不选):选项ABCD选择人数1559010(1)根据统计表画出扇形统计图;要求:画图前先求角;画图可借助任何工具,其中一个角的作图用尺规作图(保留痕迹,不写作法和证明);统计图中标注角度.(2)如果这个选择题满分是3分,正确的选项是C,则估计全体学生该题的平均得分是多少?24.如图①,已知抛物线y=ax2+bx+c经过点A(0,3),B(3,0),C(4,3).(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x轴上,直接写出两条抛物线、对称轴和y轴围成的图形的面积S(图②中阴影部分).

25.我们知道,矩形是特殊的平行四边形,所以矩形除了具备平行四边形的一切性质还有其特殊的性质;同样,黄金矩形是特殊的矩形,因此黄金矩形有与一般矩形不一样的知识.已知平行四边形ABCD,∠A=60°,AB=2a,AD=a.(1)把所给的平行四边形ABCD用两种方式分割并作说明(见题答卡表格里的示例);要求:用直线段分割,分割成的图形是学习过的特殊图形且不超出四个.分割图形分割或图形说明示例:示例:①分割成两个菱形.②两个菱形的边长都为a,锐角都为60°.(2)图中关于边、角和对角线会有若干关系或问题.现在请计算两条对角线的长度.要求:计算对角线BD长的过程中要有必要的论证;直接写出对角线AC的长.2013年广东省广州市中考数学试卷一、选择题1.比0大的数是()A.-1B.C.0D.12.如图所示的几何体的主视图是()A.B.C.D.3.在6×6方格中,将图1中的图形N平移后位置如图2所示,则图形N的平移方法中,正确的是()A.向下移动1格B.向上移动1格C.向上移动2格D.向下移动2格4.计算:(m3n)2的结果是()A.m6nB.m6n2C.m5n2D.m3n25.为了解中学生获取资讯的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图所示,该调查的方式是(),图中的a的值是()A.全面调查,26B.全面调查,24C.抽样调查,26D.抽样调查,246.已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是()A.B.C.D.7.实数a在数轴上的位置如图所示,则|a﹣2.5|=()A.a﹣2.5B.2.5﹣aC.a+2.5D.﹣a﹣2.58.若代数式有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x>0D.x≥0且x≠19.若5k+20<0,则关于x的一元二次方程x2+4x﹣k=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断10.如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=()A.B.C.D.二、填空题(本大题共6小题,每小题3分,满分18分)11.点P在线段AB的垂直平分线上,PA=7,则PB=________.12.广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为________.13.分解因式:x2+xy=________.14.已知一次函数y=(m+2)x+1,函数y的值随x值的增大而增大,则m的取值范围是_______.15.如图,Rt△ABC的斜边AB=16,Rt△ABC绕点O顺时针旋转后得到Rt△A′B′C′,则Rt△A′B′C′的斜边A′B′上的中线C′D的长度为________.16.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为________.三、解答题(本大题共9小题,满分102分,解答应写出文字说明,证明过程或演算步骤)17.解方程:x2﹣10x+9=0.18.如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.19.先化简,再求值:,其中.20.已知四边形ABCD是平行四边形(如图),把△ABD沿对角线BD翻折180°得到△A′BD.(1)利用尺规作出△A′BD.(要求保留作图痕迹,不写作法);(2)设DA′与BC交于点E,求证:△BA′E≌△DCE.21.在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m,规定:当m≥10时为A级,当5≤m<10时为B级,当0≤m<5时为C级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下表:111061591613120828101761375731210711368141512(1)求样本数据中为A级的频率;

(2)试估计1000个18~35岁的青年人中“日均发微博条数”为A级的人数;

(3)从样本数据为C级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.22.如图,在东西方向的海岸线MN上有A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东58°方向,船P在船B的北偏西35°方向,AP的距离为30海里.(1)求船P到海岸线MN的距离(精确到0.1海里);(2)若船A、船B分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.23.如图,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数(x>0,k≠0)的图象经过线段BC的中点D.(1)求k的值;(2)若点P(x,y)在该反比例函数的图象上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围.24.已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上运动,点D在⊙O上运动(不与点B重合),连接CD,且CD=OA.(1)当时(如图),求证:CD是⊙O的切线;(2)当时,CD所在直线于⊙O相交,设另一交点为E,连接AE.①当D为CE中点时,求△ACE的周长;②连接OD,是否存在四边形AODE为梯形?若存在,请说明梯形个数并求此时AE•ED的值;若不存在,请说明理由.25.已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.

(1)使用a、c表示b;

(2)判断点B所在象限,并说明理由;

(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点,求当x≥1时y1的取值范围.2013年广东省湛江市中考数学试卷一、选择题(本大题共12小题,每小题4分,满分47分.在每小题给出的四个选项中,只有一项是符合题目要求的。)1.下列各数中,最小的数是()A.1B.C.0D.-12.国家提倡“低碳减排”,湛江某公司计划在海边建风能发电站,电站年均发电量约为213000000度,若将数据213000000用科学记数法表示为()A.213×106B.21.3×107C.2.13×108D.2.13×1093.气候宜人的省级度假胜地吴川吉兆,测得一至五月份的平均气温分别为17、17、20、22、24(单位:℃),这组数据的中位数是()A.24B.22C.20D.174.如图是由6个大小相同的正方体组成的几何体,它的左视图是()A.B.C.D.5.已知一个多边形的内角和是540°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形6.在平面直角坐标系中,点A(2,-3)在第()象限.A.一B.二C.三D.四7.下列运算正确的是()A.a2•a3=a6B.(a2)4=a6C.a4÷a=a3D.(x+y)2=x2+y28.函数中,自变量x的取值范围是()A.x>-3B.x≥-3C.x≠-3D.x≤-39.计算的结果是()A.0B.1C.-1D.x10.由于受H7N9禽流感的影响,今年4月份鸡的价格两次大幅下降.有原来每斤12元连续两次降价a%后售价下调到每斤5元,下列所列方程中正确的是()A.12(1+a%)2=5B.12(1-a%)2=5C.12(1-2a%)=5D.12(1-a2%)=511.如图,AB是⊙O的直径,∠AOC=110°,则∠D=()A.25°B.35°C.55°D.70°12.四张质地、大小相同的卡片上,分别画上如图所示的四个图形.在看不到图形的情况下从中任意抽取一张,则抽取的卡片是轴对称图形的概率为()

A.B.C.D.1二、填空题(本大题共4小题,每小题4分,共16分)13.分解因式:x2-4=________.14.抛物线y=x2+1的最小值是________.15.已知反比例函数y=的图象经过点(1,2),则k的值为________.16.如图,所有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…均相距一个单位,则顶点A3的坐标是________,A92的坐标是________.三、解答题(本大题共10小题,其中17-18每小题6分,19-22每小题6分,23-25每小题6分,26题12分,共86分。)17.计算:.18.解不等式组,并把它的解集在数轴上表示出来.19.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.20.把大小和形状完全相同的6张卡片分成两组,每组3张,分别标上1、2、3,将这两组卡片分别放入两个盒子中搅匀,再从中随机抽取一张.(1)试求取出的两张卡片数字之和为奇数的概率;(2)若取出的两张卡片数字之和为奇数,则甲胜;取出的两张卡片数字之和为偶数,则乙胜;试分析这个游戏是否公平?请说明理由.21.如图,我国渔政船在钓鱼岛海域C处测得钓鱼岛A在渔政船的北偏西30°的方向上,随后渔政船以80海里/小时的速度向北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在渔政船的北偏西60°的方向上,求此时渔政船距钓鱼岛A的距离AB.(结果保留小数点后一位,其中)22.2013年3月28日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:频率分布表分数段频数频率50.5-60.5160.0860.5-70.5400.270.5-80.5500.2580.5-90.5m0.3590.5-100.524n(1)这次抽取了________名学生的竞赛成绩进行统计,其中:m=________,n=________;

(2)补全频数分布直方图;

(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?23.如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:PA为⊙O的切线;(2)若OB=5,,求AC的长.24.阅读下面的材料,先完成阅读填空,再按要求答题:

,则sin230°+cos230°=________;①

,则sin245°+cos245°=________;②

,则sin260°+cos260°=________.③

观察上述等式,猜想:对任意锐角A,都有sin2A+cos2A=________.④

(1)如图,在锐角三角形ABC中,利用三角函数的定义及勾股定理对∠A证明你的猜想;

(2)已知:∠A为锐角(cosA>0)且,求cosA.25.周末,小明骑自行车从家里出发到野外郊游.从家出发1小时后到达南亚所(景点),游玩一段时间后按原速前往湖光岩.小明离家1小时50分钟后,妈妈驾车沿相同路线前往湖光岩,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.(1)求小明骑车的速度和在南亚所游玩的时间;(2)若妈妈在出发后25分钟时,刚好在湖光岩门口追上小明,求妈妈驾车的速度及CD所在直线的函数解析式.26.如图,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,-5).

(1)求此抛物线的解析式;

(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴l与⊙C有什么位置关系,并给出证明;

(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.2013年贵州省安顺市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1.计算-|-3|+1结果正确的是()A.4B.2C.-2D.-42.某市在一次扶贫助残活动中,共捐款2580000元,将2580000用科学记数法表示为()A.2.58×107元B.2.58×106元C.0.258×107元D.25.8×1063.将点A(-2,-3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.已知关于x的方程x2-kx-6=0的一个根为x=3,则实数k的值为()A.1B.-1C.2D.-25.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠CB.AD=CBC.BE=DFD.AD∥BC6.如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米7.若是反比例函数,则a的取值为()A.1B.-1C.±lD.任意实数8.下列各数中,3.14159,,0.131131113…,-π,,,无理数的个数有()A.1个B.2个C.3个D.4个9.已知一组数据3,7,9,10,x,12的众数是9,则这组数据的中位数是()A.9B.9.5C.3D.1210.如图,A、B、C三点在⊙O上,且∠AOB=80°,则∠ACB等于()A.100°B.80°C.50°D.40°二、填空题(共8小题,每小题4分,共32分)11.计算:.12.分解因式:2a3-8a2+8a=________.13.4xa+2b-5-2y3a-b-3=8是二元一次方程,那么a-b=________.14.在Rt△ABC中,∠C=90°,,BC=8,则△ABC的面积为________.15.在平行四边形ABCD中,E在DC上,若DE∶EC=1∶2,则BF∶BE=________.16.已知关于x的不等式(1-a)x>2的解集为,则a的取值范围是________.17.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为________.18.直线上有2013个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有________个点.三、解答题(共8小题,满分88分,解答应写出必要的文字说明或演算步骤)19.计算:20.先化简,再求值:,其中.21.某市为进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路.实际施工时,每月的工效比原计划提高了20%,结果提前5个月完成这一工程.求原计划完成这一工程的时间是多少月?22.已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(-2,0),与反比例函数在第一象限内的图象的交于点B(2,n),连接BO,若S△AOB=4.(1)求该反比例函数的解析式和直线AB的解析式;(2)若直线AB与y轴的交点为C,求△OCB的面积.23.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.24.某校一课外活动小组为了解学生最喜欢的球类运动情况,随机抽查本校九年级的200名学生,调查的结果如图所示.请根据该扇形统计图解答以下问题:

(1)求图中的x的值;

(2)求最喜欢乒乓球运动的学生人数;

(3)若由3名最喜欢篮球运动的学生,1名最喜欢乒乓球运动的学生,1名最喜欢足球运动的学生组队外出参加一次联谊活动.欲从中选出2人担任组长(不分正副),列出所有可能情况,并求2人均是最喜欢篮球运动的学生的概率.25.如图,AB是⊙O直径,D为⊙O上一点,AT平分∠BAD交⊙O于点T,过T作AD的垂线交AD的延长线于点C.(1)求证:CT为⊙O的切线;(2)若⊙O半径为2,,求AD的长.26.如图,已知抛物线与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,3).

(1)求抛物线的解析式;

(2)设抛物线的顶点为D,在其对称轴的右侧的抛物线上是否存在点P,使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由;

(3)点M是抛物线上一点,以B,C,D,M为顶点的四边形是直角梯形,试求出点M的坐标.2013年贵州省毕节地区中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分.在每小题的四个选项中,中只有一个选项正确.)1.-2的相反数是()A.±2B.2C.-2D.2.如图所示的几何体的主视图是()A.B.C.D.3.2013年毕节市参加初中毕业学业(升学)统一考试的学生人数约为107000人,将107000用科学记数法表示为()A.10.7×104B.1.07×105C.107×103D.0.107×1064.实数(相邻两个1之间依次多一个0),其中无理数是()个.A.1B.2C.3D.45.估计的值在()之间.A.1与2之间B.2与3之间C.3与4之间D.4与5之间6.下列计算正确的是()A.a3•a3=2a3B.a3÷a=a3C.a+a=2aD.(a3)2=a57.已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为()A.16B.20或16C.20D.128.在下列图形中既是轴对称图形又是中心对称图形的是()①线段,②角,③等边三角形,④圆,⑤平行四边形,⑥矩形.A.③④⑥B.①③⑥C.④⑤⑥D.①④⑥9.数据4,7,4,8,6,6,9,4的众数和中位数是()A.6,9B.4,8C.6,8D.4,610.分式方程的解是()A.x=-3B.C.x=3D.无解11.如图,已知AB∥CD,∠EBA=45°,∠E+∠D的度数为()A.30°B.60°C.90°D.45°12.如图在⊙O中,弦AB=8,OC⊥AB,垂足为C,且OC=3,则⊙O的半径()A.5B.10C.8D.613.一次函数y=kx+b(k≠0)与反比例函数的图象在同一直角坐标系下的大致图象如图所示,则k、b的取值范围是()A.k>0,b>0B.k<0,b>0C.k<0,b<0D.k>0,b<014.将二次函数y=x2的图象向右平移一个单位长度,再向上平移3个单位长度所得的图象解析式为()A.y=(x-1)2+3B.y=(x+1)2+3C.y=(x-1)2-3D.y=(x+1)2-315.在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为()A.2,22.5°B.3,30°C.3,22.5°D.2,30°二、填空题(本大题共5个小题,每小题5分,共25分)16.二元一次方程组的解是________.17.正八边形的一个内角的度数是________度.18.已知⊙O1与⊙O2的半径分别是a,b,且a、b满足,圆心距O1O2=5,则两圆的位置关系是________.19.已知圆锥的底面半径是2cm,母线长为5cm,则圆锥的侧面积是________cm3(结果保留π)20.一次函数y=kx+1的图象经过(1,2),则反比例函数的图象经过点(2,________).三、解答题(本大题共7个小题,各题的分值见题号,共80分)21.计算:.22.甲、乙玩转盘游戏时,把质地相同的两个转盘A、B平均分成2份和3份,并在每一份内标有数字如图.游戏规则:甲、乙两人分别同时转动两个转盘各一次,当转盘停止后,指针所在区域的数字之和为偶数时甲获胜;数字之和为奇数时乙获胜.若指针落在分界线上,则需要重新转动转盘.

(1)用画树状图或列表的方法,求甲获胜的概率;(2)这个游戏对甲、乙双方公平吗?请判断并说明理由.23.先化简,再求值.,其中m=2.24.解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.25.四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.

(1)求证:△ADE≌△ABF;

(2)填空:△ABF可以由△ADE绕旋转中心________点,按顺时针方向旋转________度得到;

(3)若BC=8,DE=6,求△AEF的面积.26.如图,小明为了测量小山顶的塔高,他在A处测得塔尖D的仰角为45°,再沿AC方向前进73.2米到达山脚B处,测得塔尖D的仰角为60°,塔底E的仰角为30°,求塔高.(精确到0.1米,)27.如图,抛物线y=ax2+b与x轴交于点A、B,且A点的坐标为(1,0),与y轴交于点C(0,1).

(1)求抛物线的解析式,并求出点B坐标;

(2)过点B作BD∥CA交抛物线于点D,连接BC、CA、AD,求四边形ACBD的周长;(结果保留根号)

(3)在x轴上方的抛物线上是否存在点P,过点P作PE垂直于x轴,垂足为点E,使以B、P、E为顶点的三角形与△CBD相似?若存在请求出P点的坐标;若不存在,请说明理由.2013年湖南省张家界市中考数学试卷一、选择题(本大题共8个小题,每小题3分,共计24分)1.-2013的绝对值是()A.-2013B.2013C.D.2.下列运算正确的是()A.3a-2a=1B.x8-x4=x2C.D.-(2x2y)3=-8x6y33.把不等式组的解集在数轴上表示正确的是()A.B.C.D.4.下面四个几何体中,俯视图不是圆的几何体的个数是()A.1B.2C.3D.45.下列各式中能用完全平方公式进行因式分解的是()A.x2+x+1B.x2+2x-1C.x2-1D.x2-6x+96.顺次连接等腰梯形四边中点所得的四边形一定是()A.矩形B.正方形C.菱形D.直角梯形7.下列事件中是必然事件的为()A.有两边及一角对应相等的三角形全等B.方程x2-x+1=0有两个不等实根C.面积之比为1∶4的两个相似三角形的周长之比也是1∶4D.圆的切线垂直于过切点的半径8.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.二、填空题(本大题共8个小题,每小题3分,共计24分)9.我国除了约960万平方千米的陆地面积外,还有约3000000平方千米的海洋面积,3000000用科学记数法表示为________.10.若3,a,4,5的众数是4,则这组数据的平均数是________.11.如图,⊙A、⊙B、⊙C两两外切,它们的半径都是a,顺次连接三个圆心,则图中阴影部分的面积是________.12.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=________.13.如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是________.14.若关于x的一元二次方程kx2+4x+3=0有实根,则k的非负整数值是________.15.从1,2,3这三个数字中任意取出两个不同的数字,则取出的两个数字都是奇数的概率是________.16.如图,OP=1,过P作PP1⊥OP,得;再过P1作P1P2⊥OP1且P1P2=1,得;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2012=________.三、解答题(本大题共9个小题,共计72分)17.计算:.18.先简化,再求值:,其中.19.如图,在方格纸上,以格点连线为边的三角形叫做格点三角形,请按要求完成下列操作:先将格点△ABC绕A点逆时针旋转90°得到△A1B1C1,再将△A1B1C1沿直线B1C1作轴反射得到△A2B2C2.20.为增强市民的节水意识,某市对居民用水实行“阶梯收费”:规定每户每月不超过月用水标准部分的水价为1.5元/吨,超过月用水标准量部分的水价为2.5元/吨.该市小明家5月份用水12吨,交水费20元.请问:该市规定的每户月用水标准量是多少吨?21.某班在一次班会课上,就“遇见路人摔倒后如何处理”的主题进行讨论,并对全班50名学生的处理方式进行统计,得出相关统计表和统计图.组别ABCD处理方式迅速离开马上救助视情况而定只看热闹人数m30n5请根据表图所提供的信息回答下列问题:

(1)统计表中的m=________,n=________;

(2)补全频数分布直方图;

(3)若该校有2000名学生,请据此估计该校学生采取“马上救助”方式的学生有多少人?22.国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航.如图1,在一次巡航过程中,巡航飞机飞行高度为2001米,在点A测得高华峰顶F点的俯角为30°,保持方向不变前进1200米到达B点后测得F点俯角为45°,如图2.请据此计算钓鱼岛的最高海拔高度多少米.(结果保留整数,参考数值:,)23.阅读材料:求1+2+22+23+24+…+22013的值.

解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:

2S=2+22+23+24+25+…+22013+22014

将下式减去上式得2S-S=22014-1即S=22014-1即1+2+22+23+24+…+22013=22014-1

请你仿照此法计算:

(1)1+2+22+23+24+…+210

(2)1+3+32+33+34+…+3n(其中n为正整数).24.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.

(1)求证:OE=OF;

(2)若CE=12,CF=5,求OC的长;

(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.25.如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.

(1)求直线CD的解析式;

(2)求抛物线的解析式;

(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,求证:△CEQ∽△CDO;

(4)在(3)的条件下,若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.2013年江苏省徐州市中考数学试卷一、选择题(共8小题,每小题3分,满分24分。在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填在括号内)1.的相反数是()A.2B.-2C.D.2.下列各式的运算结果为x6的是()A.x9÷x3B.(x3)3C.x2•x3D.x3+x33.2013年我市财政计划安排社会保障和公共卫生等支出约1820000000元支持民生幸福工程,该数据用科学记数法表示为()A.18.2×108元B.1.82×109元C.1.82×1010元D.0.182×1010元4.若等腰三角形的顶角为80°,则它的底角度数为()A.80°B.50°C.40°D.20°5.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O的半径为()A.10B.8C.5D.36.下列函数中,y随x的增大而减少的函数是()A.y=2x+8B.y=-2+4xC.y=-2x+8D.y=4x7.下列说法正确的是()A.若甲组数据的方差,乙组数据的方差,则甲组数据比乙组数据大B.从1,2,3,4,5,中随机抽取一个数,是偶数的可能性比较大C.数据3,5,4,1,-2的中位数是3D.若某种游戏活动的中奖率是30%,则参加这种活动10次必有3次中奖8.二次函数y=ax2+bx+c图象上部分点的坐标满足下表:x…-3-2-101…y…-3-2-3-6-11…则该函数图象的顶点坐标为()A.(-3,-3)B.(-2,-2)C.(-1,-3)D.(0,-6)二、填空题(共10小题,每小题3分,满分30分.不需要写出解答过程,请把答案写在横线上)9.某天的最低气温是-2℃,最高气温是10℃,则这天气温的极差为________℃.10.当m+n=3时,式子m2+2mn+n2的值为________.11.若式子在实数范围内有意义,则x的取值范围是________.12.若∠α=50°,则它的余角是________°.13.请写出一个是中心对称图形的几何图形的名称:________.14.若两圆的半径分别是2和3,圆心距是5,则这两圆的位置关系是________.15.反比例函数的图象经过点(1,-2),则k的值为________.16.如图,点A、B、C在⊙O上,若∠C=30°,则∠AOB的度数为________°.17.已知扇形的圆心角为120°,弧长为10πcm,则扇形的半径为________cm.18.如图,在正八边形ABCDEFGH中,四边形BCFG的面积为20cm2,则正八边形的面积为________cm2.三、解答题(共10小题,满分86分。请在答题卡指定区域内作答,解答时请写出证明、证明过程或演算步骤)19.(1)计算:;(2)计算:.20.(1)解方程:x2-2x=1;(2)解不等式组:.21.2012年我国国民经济运行总体平稳,全年全国公共财政收入117210亿元,2008-2012年全国公共财政收入及其增长速度情况如图所示:

(1)这五年中全国公共财政收入增长速度最高的年份是________年;

(2)2012年的全国公共财政收入比2011年多________亿元;

(3)这五年的全国公共财政收入增长速度的平均数是________.22.一只不透明的袋子中装有白球2个和黄球1个,这些球除颜色外都相同,搅匀后从中任意摸出1个球,记下颜色后不放回,搅匀后再从中任意摸出1个球,请用列表或画树状图的方法求两次都摸出白球的概率.23.为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?24.如图,四边形ABCD是平行四边形,DE平分∠ADC交AB于点E,BF平分∠ABC,交CD于点F.(1)求证:DE=BF;(2)连接EF,写出图中所有的全等三角形.(不要求证明)25.如图,为了测量某风景区内一座塔AB的高度,小明分别在塔的对面一楼房CD的楼底C,楼顶D处,测得塔顶A的仰角为45°和30°,已知楼高CD为10m,求塔的高度(结果精确到0.1m).(参考数据:,)26.如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)(1)若△CEF与△ABC相似.①当AC=BC=2时,AD的长为________;②当AC=3,BC=4时,AD的长为________;(2)当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.27.为增强公民的节约意识,合理利用天然气资源,某市自1月1日起对市区民用管道天然气价格进行调整,实行阶梯式气价,调整后的收费价格如表所示:每月用气量单价(元/m3)不超出75m3的部分2.5超出75m3不超出125m3的部分a超出125m3的部分a+0.25(1)若甲用户3月份的用气量为60m3,则应缴费________元;

(2)若调价后每月支出的燃气费为y(元),每月的用气量为x(m3),y与x之间的关系如图所示,求a的值及y与x之间的函数关系式;

(3)在(2)的条件下,若乙用户2、3月份共用1气175m3(3月份用气量低于2月份用气量),共缴费455元,乙用户2、3月份的用气量各是多少?28.如图,二次函数的图象与x轴交于点A(-3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.

(1)请直接写出点D的坐标:________;

(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;

(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.

2013年辽宁省鞍山市中考数学试卷一、选择题(共8小题,每小题2分,满分16分)1.3-1等于()A.3B.C.-3D.2.一组数据2,4,5,5,6的众数是()A.2B.4C.5D.63.如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=40°,则∠A的度数为()A.100°B.90°C.80°D.70°4.要使式子有意义,则x的取值范围是()A.x>0B.x≥-2C.x≥2D.x≤25.已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A.45°B.35°C.25°D.20°6.已知b<0,关于x的一元二次方程(x-1)2=b的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根7.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:选手甲乙丙丁平均数(环)9.29.29.29.2方差(环2)0.0350.0150.0250.027则这四人中成绩发挥最稳定的是()A.甲B.乙C.丙D.丁8.如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:

①abc>0;

②b+2a=0;

③抛物线与x轴的另一个交点为(4,0);

④a+c>b;

⑤3a+c<0.其中正确的结论有()A.5个B.4个C.3个D.2个二、填空题(共8小题,每小题2分,满分16分)9.分解因式:m2-10m=________.10.如图,∠A+∠B+∠C+∠D=________度.11.在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第________象限.12.若方程组,则3(x+y)-(3x-5y)的值是________.13.△ABC中,∠C=90°,AB=8,,则BC的长________.14.刘谦的魔术表演风靡全国,小明也学起了刘谦发明了一个魔术盒,当任意实数对(a,b)进入其中时,会得到一个新的实数:a2+b-1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(-1,3)放入其中,得到实数m,再将实数对(m,1)放入其中后,得到实数是________.15.如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为220cm,此时木桶中水的深度是________cm.16.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是________.三、计算题(共2小题,每小题6分,满分12分)17.先化简,再求值:,其中.18.某商场购进一批单价为4元的日用品.若按每件5元的价格销售,每月能卖出3万件;若按每件6元的价格销售,每月能卖出2万件,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数关系.(1)试求y与x之间的函数关系式;(2)当销售价格定为多少时,才能使每月的利润最大?每月的最大利润是多少?四、应用题(第19至24题,每题2小题,每小题6分,满分12分。第25、26题满分各10分)19.小明和小亮玩一个游戏:三张大小、质地都相同的卡片上分别标有1,2,3,现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和,如果和为奇数则小明胜,和为偶数则小亮胜.

(1)用列表或画树状图等方法,列出小明和小亮抽得的数字之和所有可能出现的情况;

(2)请判断该游戏对双方是否公平,并说明理由.20.如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾斜度由45°降为30°,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上.求:改善后滑滑板会加长多少?(精确到0.01)(参考数据:,,)21.如图,已知线段a及∠O,只用直尺和圆规,求作△ABC,使BC=a,∠B=∠O,∠C=2∠B(在指定作图区域作图,保留作图痕迹,不写作法)22.如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.23.如图,点A、B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB交OC于点D.(1)AC与CD相等吗?问什么?(2)若AC=2,,求OD的长度.24.(综合题)如图,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A,B两点,且与反比例函数的图象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1.(1)求点A,B,D的坐标;(2)求一次函数和反比例函数的表达式.25.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?26.如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.(1)求二次函数y=ax2+bx+c的解析式;(2)设一次函数y=0.5x+2的图象与二次函数y=ax2+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD为直角三角形,求点P的坐标.2013年山东省滨州市中考数学试卷一、选择题(本大题共12个小题,在每个小题的四个选项中只有一个正确的,请把正确的选项选出来,并将其字母标号填写在答题栏内。每小题选对得3分,错选、不选或多选均记0分,满分36分。)1.计算,正确的结果为()A.B.C.D.2.化简,正确结果为()A.aB.a2C.a-1D.a-23.把方程变形为x=2,其依据是()A.等式的性质1B.等式的性质2C.分式的基本性质D.不等式的性质14.如图,已知圆心角∠BOC=78°,则圆周角∠BAC的度数是()A.156°B.78°C.39°D.12°5.如图所示的几何体是由若干个大小相同的小正方体组成的.若从正上方看这个几何体,则所看到的平面图形是()A.B.C.D.6.若点A(1,y1)、B(2,y2)都在反比例函数的图象上,则y1、y2的大小关系为()A.y1<y2B.y1≤y2C.y1>y2D.y1≥y27.若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为()A.6,B.,3C.6,3D.8.如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是()A.0B.1C.2D.39.若从长度分别为3、5、6、9的四条线段中任取三条,则能组成三角形的概率为()A.B.C.D.10.对于任意实数k,关于x的方程x2-2(k+1)x-k2+2k-1=0的根的情况为()A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法确定11.若把不等式组的解集在数轴上表示出来,则其对应的图形为()A.长方形B.线段C.射线D.直线12.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(-1,0).则下面的四个结论:①2a+b=0;②4a-2b+c<0;③ac>0;④当y<0时,x<-1或x>2.其中正确的个数是()A.1B.2C.3D.4二、填空题(本大题共6个小题,每小题填对最后结果得4分,满分24分。)13.分解因式:5x2-20=________.14.在△ABC中,∠C=90°,AB=7,BC=5,则边AC的长为________.15.在等腰△ABC中,AB=AC,∠A=50°,则∠B=________.16.一元二次方程2x2-3x+1=0的解为________.17.在□ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,且AB=6,BC=10,则OE=________.18.观察下列各式的计算过程:5×5=0×1×100+25,15×15=1×2×100+25,25×25=2×3×100+25,35×35=3×4×100+25,…请猜测,第n个算式(n为正整数)应表示为________.三、解答题(本大题共7小题,满分60分,解答时,请写出必要的演推过程。)19.(请在下列两个小题中,任选其一完成即可)(1)解方程组:(2)解方程:.20.(计算时不能使用计算器)计算:.21.某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).

根据以上信息,解答下列问题:

(1)该班共有多少名学生?其中穿175型校服的学生有多少?

(2)在条形统计图中,请把空缺部分补充完整.

(3)在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小;

(4)求该班学生所穿校服型号的众数和中位数.22.如图,在△ABC中,AB=AC,点O在边AB上,⊙O过点B且分别与边AB、BC相交于点D、E,EF⊥AC,垂足为F.求证:直线EF是⊙O的切线.23.某高中学校为高一新生设计的学生单人桌的抽屉部分是长方体形.其中,抽屉底面周长为180cm,高为2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论