




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE4一.填空题1.设一多元复相系有个相,每相有个组元,组元之间不起化学反应。此系统平衡时必同时满足条件:、、2.热力学第三定律的两种表述分别叫做:能特斯定律和。3.假定一系统仅由两个全同玻色粒子组成,粒子可能的量子态有4种。则系统可能的微观态数为:10。4.且且5玻色分布表为;费米分布表为;玻耳兹曼分布表为。当满足条件时,玻色分布和费米分布均过渡到玻耳兹曼分布6热力学系统的四个状态量所满足的麦克斯韦关系为,,,。7.玻耳兹曼系统粒子配分函数用表示,内能统计表达式为广义力统计表达式为,熵的统计表达式为自由能的统计表达式为。8.单元开系的内能、自由能、焓和吉布斯函数所满足的全微分是:,,,。9.均匀开系的克劳修斯方程组包含如下四个微分方程:,,,等温等容条件下系统中发生的自发过程,总是朝着方向进行,当自由能减小到极小值时,系统达到平衡态;处在等温等压条件下的系统中发生的自发过程,总是朝着吉布斯函数减小的方向进行,当吉布斯函数减小到极小值时,系统达到平衡态。11.对于含N个分子的双原子分子理想气体,在一般温度下,原子内部电子的运动对热容量无贡献;温度大大于振动特征温度时,;温度小小于转动特征温度时,。温度大大于转动特征温度而小小于动特征温度时,。12.玻耳兹曼系统的特点是:系统由全同可分辨粒子组成;粒子运动状态用来描写;确定每个粒子的量子态即可确定系统的微观态;粒子所处的状态不受泡利不相容原子的约束。13准静态过程是指过程进行中的每一个中间态均可视为平衡态的过程;无摩擦准静态过程的特点是外界对系综的作用力,可用系统的状态参量表示出来。14.绝热过程是指,系统状态的改变,完全是机械或电磁作用的结果,而没有受到其他任何影响的过程。在绝热过程中,外界对系统所做的功与具体的过程无关,仅由初终两态决定。二.简述题1.写出系统处在平衡态的自由能判据。一个处在温度和体积不变条件下的系统,处在稳定平衡态的充要条件是,对于各种可能的有限虚变动,所引起的自由能的改变均大于零。即。2.写出系统处在平衡态的吉布斯函数判据。一个处在温度和压强不变条件下的系统,处在稳定平衡态的充要条件是,对于各种可能的有限虚变动,所引起的吉布斯函数的改变均大于零。即。3.写出系统处在平衡态的熵判据。一个处在内能和体积不变条件下的系统,处在稳定平衡态的充要条件是,对于各种可能的有限虚变动,所引起的熵变均小于零。即4.玻尔兹曼关系与熵的统计解释。由波耳兹曼关系可知,系统熵的大小反映出系统在该宏观状态下所具有的可能的微观状态的多少。而可能的微观状态的多少,反映出在该宏观平衡态下系统的混乱度的大小。故,熵是系统内部混乱度的量度。5.为什么在常温或低温下原子内部的电子对热容量没有贡献?6.为什么在常温或低温下双原子分子的振动对热容量贡献可以忽略?因为双原子分子的振动特征温度,在常温或低温下,振子通过热运动获得能量从而跃迁到激发态的概率极小,因此对热容量的贡献可以忽略。能量均分定理。对于处在平衡态的经典系统,当系统的温度为T时,粒子能量的表达式中的每一个独立平方项的平均值为。8等概率原理。对于处在平衡态的孤立系统,系统的各种可能的微观状态出现的概率是相等的。系统的基本热力学函数有哪些?什么叫特性函数?什么叫自然参量。基本热力学函数有:物态方程,内能,熵。特性函数:适当选择独立变量,只要知道一个热力学函数就可以求偏导数而求得均匀系统的全部热力学函数,从而把均匀系统的平衡性质确定,这个热力学函数称为特性函数。11试说明,在应用经典理论的能量均分定理求理想气体的热容量时,出现哪些与实验不符的结论或无法解释的问题(至少例举三项)?(B)满足非简并条件的玻色系统和费米系统(C)满足弱简并性条件的玻色系统和费米系统(D)非定域体系统10.和分别是双原子分子的振动特征温度和转动特征温度,下面说法正确的是(A)时,振动自由度完全“解冻”,但转动自由度仍被“冻结”。(B)时,转动自由度完全“解冻”,但振动自由度仍被“冻结”(C)时,振动自由度和转动自由度均完全“解冻”。(D)时,振动自由度和转动自由度均完全“解冻”。11.气体的非简并条件是D(A)分子平均动能远远大于(B)分子平均距离极大于它的尺度(C)分子数密度远远小于1(D)分子平均距离远大于分子德布罗意波的平均热波长12.不考虑粒子自旋,在边长L的正方形区域内运动的二维自由粒子,其中动量的大小处在范围的粒子可能的量子态数为B(A)(B)(C)(D)五.推导与证明1.试用麦克斯韦关系,导出方程,假定可视为常量,由此导出理想气体的绝热过程方程(常量)。解:∵,∴由麦氏关系,绝热过程,理想气体,积分得(常量)∵,故:,即:(常量)2.证明:证明:选T,V为独立变量,则而,故3.证明焓态方程:。证:选T、p作为状态参量时,有(1)(2)而,(3)(2)代入(3)得:(4)比较(1)、(4)得:(5)(6)将麦氏关系代入(6),即得4.导出含有N个原子的爱因斯坦固体的内能和热容量表达式:,解:按爱因斯坦假设,将N个原子的运动视为3N个线性谐振子的振动,且所有谐振子的振动频率相同。谐振子的能级为:则,振子的配分函数为:∵∴引入爱因斯坦特征温度:,即得:5.导出爱因斯坦固体的熵表达式:解:设固体系统含有N个原子,按爱因斯坦假设,将N个原子的运动视为3N个线性谐振子的振动,且所有谐振子的振动频率相同。谐振子的能级为:则,振子的配分函数为:6.证明,对于一维自由粒子,在长度内,能量在~的范围内,可能的量子态数为。证:由量子态与相空间体积元之间的对应关系,对于一维自由粒子,在相空间体积元内的可能的量子态数为。因此,在长度内,动量大小在范围内粒子的可能的量子态数为而,,故,在长度内,能量在~范围内,可能的量子态数为。7.证明:①②①证明:,由全微分条件得:②证明:由,令得:8.解:在体积V内,动量在范围的光子的量子态数为又所以,在体积V内,圆频率在范围内的光子的量子态数为在此范围内的光子数为故,在此范围内的辐射能量为:9.对于给定系统,若已知,,求此系统的物态方程。解:设物态方程为,则(1)∵∴(2)将和代入(2)得(3)将和(3)代入(1)得积分得:,即:11.已知气体系统通常满足经典极限条件且粒子动量和能量准连续变化,采用量子统计方法导出单原子分子理想气体的内能。解:气体系统遵从玻耳兹曼分布,粒子配分函数为(对所有量子态s求和)当粒子能量准连续变化时,上述对量子态求和可用空间积分替代。因为,在6维空间中,,,,,,范围内的粒子,其可能的量子态数为且,粒子的能量为:。所以即,而由内能的统计表达式,得:12.证明:证:(1)∵(2)(2)代入(1)(3)将麦氏关系:代入(3)得13.证明,理想气体的摩尔自由能为:证明:选T,V为独立变量,则理想气体的物态方程为:,,故:,14.证明,对于二维自由粒子,在面积内,能量在~范围内,可能的量子态数为。证:由量子态与相空间体积元之间的对应关系,对于二维自由粒子,在相空间体积元内的可能的量子态数为。因此,在面积内,动量大小在范围内粒子的可能
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人造革的环保标准与认证流程考核试卷
- 某研究院财务规划管理制度及流程
- 辅警转正工作总结
- 烟台市重点中学2025届高三三调(5月)数学试题试卷
- 桌子创意美术课件
- 2025年份第一季度离婚协议中房产增值部分分割细则
- 《社会工作伦理》课件:实践原则与案例分析
- 2025年4月份离婚协议中危险病原体保管责任约定
- 标准个人借款担保合同范例二零二五年
- 全新机房搬迁协议合同
- 网络运维方案
- 江苏省常熟市2022-2023学年高一下学期期中考试历史试题 含答案
- 2025年04月国家广播电视总局直属事业单位公开招聘310人笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 地铁施工监测监理细则
- 呼吸机的使用操作流程
- “双碳”目标下数智化供应链运作管理策略研究
- 住建局安全管理汇报
- 空调定期清洗消毒制度消毒
- 2024-2025学年下学期高二政治选必修2第三单元B卷
- 重庆市拔尖强基联盟2024-2025学年高三下学期3月联合考试历史试题(含答案)
- 果园种植管理合作合同范本
评论
0/150
提交评论