版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济南市第四十六中学2022年高一数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若函数f(x)=ax3﹣bx+c为奇函数,则c=()A.0 B.1 C.﹣1 D.﹣2参考答案:A【考点】函数奇偶性的性质.【分析】利用定义域含原点的奇函数的图象过原点,求得参数c的值.【解答】解:∵函数f(x)=ax3﹣bx+c为奇函数,∴f(0)=0,求得c=0,故选:A.2.设全集为R,函数f(x)=的定义域为M,则?RM为()A.(﹣∞,1) B.(1,+∞) C.(﹣∞,1] D.[1,+∞)参考答案:B【考点】函数的定义域及其求法;补集及其运算.
【专题】函数的性质及应用.【分析】由根式内部的代数式大于等于0求出集合M,然后直接利用补集概念求解.【解答】解:由1﹣x≥0,得x≤1,即M=(﹣∞,1],又全集为R,所以?RM=(1,+∞).故选B.【点评】本题考查了函数的定义域及其求法,考查了补集及其运算,是基础题.3.已知直线的斜率为,将直线绕点P顺时针旋转所得的直线的斜率是(
)A.0
B.
C.
D.参考答案:C4.已知幂函数y=f(x)的图象过点(4,2),则f(4)的值为()A.
B.1
C.2
D.4参考答案:C5.(5分)已知函数f(x)=sin(2x+φ)(0<φ<π)的部分图象,如图所示,则φ=() A. B. C. D. 参考答案:B考点: 正弦函数的图象.专题: 计算题;三角函数的图像与性质.分析: 由题意1=sin(2×+φ),可解得:φ+=2k,k∈Z,根据0<φ<π,即可解得φ的值.解答: ∵由图象可知,点(,1)在函数f(x)=sin(2x+φ)(0<φ<π)的图象上,∴1=sin(2×+φ),∴可解得:φ+=2k,k∈Z,∵0<φ<π,∴φ=,故选:B.点评: 本题主要考查了正弦函数的图象和性质,属于基础题.6.已知,且则的值为
(
)A. B. C.13
D.19参考答案:A7.设Sn为数列{an}的前n项和,an=1+2+22+…+2n-1,则Sn的值为()A.2n-1
B.2n-1-1C.2n-n-2
D.2n+1-n-2参考答案:D8.将函数的图象上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是(
)
(A)
(B)(C)
(D)参考答案:C略9.某中学举行高一广播体操比赛,共10个队参赛,为了确定出场顺序,学校制作了10个出场序号签供大家抽签,高一(l)班先抽,则他们抽到的出场序号小于4的概率为(
)A. B. C. D.参考答案:D【分析】古典概率公式得到答案.【详解】抽到的出场序号小于4的概率:故答案选D【点睛】本题考查了概率的计算,属于简单题.10.已知,且等于(
)A、
B、
C、
D、参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.已知幂函数的图象过点,则____________.参考答案:略12.函数的定义域为________;参考答案:13.把“五进制”数转化为“十进制”数是_____________参考答案:194由.故答案为:194.14.函数f(x)=+log3(x+2)的定义域是.参考答案:(﹣2,﹣1)∪(﹣1,3]【考点】函数的定义域及其求法.
【专题】函数的性质及应用.【分析】根据对数函数的性质以及二次公式的性质得到关于x的不等式组,解出即可.【解答】解:由题意得:,解得:﹣2<x≤3且x≠﹣1,故答案为:(﹣2,﹣1)∪(﹣1,3].【点评】本题考查了求函数的定义域问题,考查对数函数的性质,是一道基础题.15.已知f(x)=,则f[f(-2)]=________________参考答案:16.设各项都为正数的等比数列的前项和为,若,则
▲
.参考答案:9
17.(5分)下列五个命题中:①函数y=loga(2x﹣1)+2015(a>0且a≠1)的图象过定点(1,2015);②若定义域为R函数f(x)满足:对任意互不相等的x1、x2都有(x1﹣x2)[f(x1)﹣f(x2)]>0,则f(x)是减函数;③f(x+1)=x2﹣1,则f(x)=x2﹣2x;④若函数f(x)=是奇函数,则实数a=﹣1;⑤若a=(c>0,c≠1),则实数a=3.其中正确的命题是
.(填上相应的序号).参考答案:①③⑤考点: 命题的真假判断与应用.专题: 函数的性质及应用.分析: ①,令函数y=f(x)=loga(2x﹣1)+2015(a>0且a≠1),易求f(1)=2015,可判断①;②,依题意,(x1﹣x2)[f(x1)﹣f(x2)]>0?>0,利用函数单调性的定义可判断②;③,易求f(x+1)═(x+1)2﹣2(x+1),于是知f(x)=x2﹣2x,可判断③;④,依题意知f(0)=0,可求得a=1,可判断④;⑤,利用对数的换底公式,可得a==log28=3(c>0,c≠1),可判断⑤.解答: 对于①,函数y=f(x)=loga(2x﹣1)+2015(a>0且a≠1),有f(1)=2015,即其图象过定点(1,2015),故①正确;对于②,若定义域为R函数f(x)满足:对任意互不相等的x1、x2都有(x1﹣x2)[f(x1)﹣f(x2)]>0,即k=>0,则f(x)是增函数,故②错误;对于③,f(x+1)=x2﹣1=[(x+1)﹣1]2﹣1=(x+1)2﹣2(x+1),则f(x)=x2﹣2x,故③正确;对于④,若函数f(x)=是奇函数,又其定义域为R,故f(0)==0,解得实数a=1,故④错误;对于⑤,若a==log28(c>0,c≠1),则实数a=3,故⑤正确.综上所述,正确选项为:①③⑤.故答案为:①③⑤.点评: 本题考查命题的真假判断与应用,着重考查对数函数的图象与性质,考查函数的单调性与奇偶性的判断,属于中档题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在三棱锥A﹣BCD中,CD⊥BD,AB=AD,E为BC的中点.(Ⅰ)求证:AE⊥BD;(Ⅱ)设平面ABD⊥平面BCD,AD=CD=2,BC=4,求三棱锥D﹣ABC的体积.参考答案:【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的性质.【分析】(Ⅰ)设BD的中点为O,连接AO,EO,证明AO⊥BD,CD⊥BD,EO⊥BD.推出BD⊥平面AOE,然后证明AE⊥BD.(Ⅱ)利用三棱锥D﹣ABC与C﹣ABD的体积相等,求出S△ABD,然后求解三棱锥C﹣ABD的体积即可.【解答】(Ⅰ)证明:设BD的中点为O,连接AO,EO,∵AB=AD,∴AO⊥BD,又∵E为BC的中点,∴EO∥CD,∵CD⊥BD,∴EO⊥BD.…∵OA∩OE=O,∴BD⊥平面AOE,又∵AE?平面AOE,∴AE⊥BD.…(Ⅱ)解:由已知得三棱锥D﹣ABC与C﹣ABD的体积相等.…(7分)∵CD⊥BD,平面ABD⊥平面BCD,∴CD⊥平面ABD,BD==.由已知可得:S△ABD=BD?=.∴三棱锥C﹣ABD的体积.所以,三棱锥D﹣ABC的体积为.…(12分)【点评】本题考查几何体的体积的求法,直线与平面垂直的性质定理的应用,考查转化思想以及计算能力,空间想象能力.19.(12分)设f(x)为定义在R上的偶函数,当0≤x≤2时,y=x;当x>2时,y=f(x)的图象是顶点在P(3,4),且过点A(2,2)的抛物线的一部分(1)求函数f(x)在(﹣∞,﹣2)上的解析式;(2)在直角坐标系中直接画出函数f(x)的图象;(3)写出函数f(x)值域.参考答案:考点: 二次函数的性质;函数奇偶性的性质.专题: 计算题;作图题.分析: (1)当x∈(﹣∞,﹣2)时,y=f(x)的图象是顶点在P(3,4),且过点A(2,2)的抛物线的一部分,利用抛物线的顶点式写出其解析式即可.(2)由题意知,先利用一次函数及二次函数的图象画出y轴右侧的图象,再根据偶函数图象的对称性,得出整个图象.(3)由(2)中函数图象可知,函数的最大最大值为4,从而得出函数的值域.解答: (1)当x∈(﹣∞,﹣2)时,∵y=f(x)的图象是顶点在P(3,4),且过点A(2,2)的抛物线的一部分∴解析式为f(x)=﹣2(x+3)2+4,…2分(2)由题意知:当0≤x≤2时,y=x;当x>2时,y=﹣2(x+3)2+4,先利用一次函数及二次函数的图象画出y轴右侧的图象,再根据偶函数图象的对称性,得出图象如图所示.…6分(3)由(2)中函数图象可知,函数的最大值为4,故函数的值域为:(﹣∞,4]…8分.点评: 本题主要考查分段函数及函数的图象、考查函数单调性的应用、函数奇偶性的应用等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.20.若||=2,||=,与的夹角为45°,要使k-与垂直,求k(12分)参考答案:
k-与垂直,K,,21.已知,且为第二象限角.(Ⅰ)求的值;(Ⅱ)求的值.参考答案:(Ⅰ);(Ⅱ).【分析】(Ⅰ)由已知利用同角三角函数基本关系式可求,利用诱导公式,二倍角公式即可计算得解;(Ⅱ)由已知利用二倍角的余弦函数公式可求cos2α的值,根据同角三角函数基本关系式可求tan2α的值,根据两角和的正切函数公式即可计算得解.【详解】(Ⅰ)由已知,得,∴.(Ⅱ)∵,得,∴.【点睛】本题主要考查了同角三角函数基本关系式,诱导公式,二倍角公式,两角和的正切函数公式在三角函数化简求值中的综合应用,考查了计算能力和转化思想,属于基础题.22.已知函数.(1)求函数的单调递减区间;(2)若在上恒成立,求实数的取值范围;(3)过点作函数图像的切线,求切线方程.参考答案:(Ⅰ)得
2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 产品研发与技术转移制度
- 第2课《腊八粥》第一课时(教学设计)-【上好课】六年级语文下册部编版
- 2024年陕西客运技能鉴定题库
- 算法设计与分析 课件 4.7-分治法 - 典型应用 - 归并排序
- 2024年葫芦岛道路旅客运输考卷
- 2024年嘉峪关客运资格证考试题库下载
- 2024年玉林客运从业资格证考试网
- 2024年安徽客运资格证应用能力考试题答案
- 2024年上饶a1客运资格证
- 吉首大学《工程荷载与可靠度设计原理》2021-2022学年第一学期期末试卷
- 建设工程企业资质改革措施表2020
- DV-PV培训课件:设计验证和生产确认
- 坐骨神经痛及治疗课件
- 数控车床编程基本学习培训课件
- 福建省福州市长乐区2022-2023学年八年级上学期期中英语试题(含答案解析)
- 部编版语文教材全套目录小学到高中(2022年)
- 小学生血液知识讲座课件
- 小讲课-中心静脉压的测量及临床意义
- 急性心肌梗死病例
- 2022年西南交通大学辅导员招聘考试笔试试题及答案解析
- 2022年全国小学生天文知识竞赛考试题(含答案)
评论
0/150
提交评论