版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市和平区2016年中考数学模拟试卷(含解析)(常用版)(可以直接使用,可编辑完整版资料,欢迎下载)
2021年天津市和平区中考数学模拟试卷天津市和平区2016年中考数学模拟试卷(含解析)(常用版)(可以直接使用,可编辑完整版资料,欢迎下载)一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin60°的值等于()A. B. C. D.12.一只口袋中放着若干只红球和白球,这两种球除了颜色以外没有任何其他区别,袋中的球已经搅匀,蒙上眼睛从口袋中取出一只球,取出红球的概率是.则取出白球的概率是()A. B. C. D.3.一个几何体的三视图如下图所示,那么这个几何体是()A. B. C. D.4.已知一元二次方程x2+x﹣1=0,下列判断正确的是()A.该方程有两个相等的实数根B.该方程有两个不相等的实数根C.该方程无实数根D.该方程根的情况不确定5.若一个正六边形的周长为24,则该正六边形的面积为()A. B. C.12 D.246.在Rt△ABC,∠C=90°,AB=2,AC=,则∠A=()A.75° B.60° C.45° D.30°7.已知反比例函数y=,当﹣3<x<﹣1时,y的取值范围是()A.y<0 B.﹣3<y<﹣1 C.﹣6<y<﹣2 D.2<y<68.如图是由5个大小相同的小正方体搭成的几何体,它的左视图是()A. B. C. D.9.如图,用两根等长的钢条AC和BD交叉构成一个卡钳,可以用来测量工作内槽的宽度,设,且量得CD=b,则内槽的宽AB等于()A.mb B. C. D.10.复印纸的型号有A0、A1、A2、A3、A4等,它们之间存在着这样一种关系:将其中某一型号(如A3)的复印纸较长边的中点对折后,就能得到两张下一型号(A4)的复印纸,且得到的两个矩形都和原来的矩形相似(如图),那么这些型号的复印纸的长宽之比为()A.2:1 B.:1 C.:1 D.3:111.直线l1和l2在同一直角坐标系中的位置如图所示,点P1(x1,y1)在直线l1上,点P2(x2,y2)在直线l2上,点P3(x3,y3)为直线l1、l2的交点,其中x3<x1,x3<x2,则()A.y1<y3<y2 B.y2<y1<y3 C.y2<y3<y1 D.y3<y1<y212.如图,一次函数的图象上有两点A、B,A点的横坐标为2,B点的横坐标为a(0<a<4且a≠2),过点A、B分别作x的垂线,垂足为C、D,△AOC、△BOD的面积分别为S1、S2,则S1、S2的大小关系是()A.S1>S2 B.S1=S2 C.S1<S2 D.无法确定二、填空题(本大题共6小题,每小题3分,共18分)13.等边三角形绕它的中心至少旋转______度,才能和原图形重合.14.已知图中的曲线是反比例函数y=图象上的一支,如果A(a1,b1),B(a2,b2)两点在该反比例函数图象的同一支上,且a1>a2,那么b1______b2.15.一个透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同,摸出1个球,记下颜色后放回,并搅匀,再摸出1个球,则两次摸出的球恰好颜色不同的概率是______.16.如图AB、AC是⊙O的两条弦,∠A=30°,过点C的切线与OB的延长线交于点D,则∠D的度数为______度.17.若b=2a+3c,则抛物线y=ax2+bx+c与x轴的公共点的个数是______.18.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图①,△ABC是顶角为36°的等腰三角形,这个三角形的三分线已经画出,判断△DAB与△EBC是否相似:______(填“是”或“否”);(2)如图②,△ABC中,AC=2,BC=3,∠C=2∠B,则△ABC的三分线的长为______.三、解答题(本大题共7小题,共66分,解答赢写出文字说明、演算步骤或推理过程)19.解下列方程:(1)x(x﹣1)+2(x﹣1)=0;(2)x2+1.5=3x.20.(1)抛物线的顶点在原点,且经过点(﹣2,8),求该抛物线的解析式.(2)如图,抛物线y=ax2+bx的顶点为A(﹣3,﹣3),且经过点P(t,0)(t≠0).y的最小值=______;点P的坐标为______;当x>﹣3时,y随x的增大而______.21.已知,AB是⊙O的直径,点P,C是⊙O上的点,△APO≌△CPO,(I)如图①,若∠PCB=36°,求∠OPC的大小;(Ⅱ)如图②,过点C作AP的垂线DE,垂足为点D,且CD是⊙O的切线,若PD=1,求⊙O的直径.22.小唐同学在操场上放风筝,风筝从A处起飞,几分钟后便飞达C处,此时,在AQ延长线上B处的小宋同学,发现自己的位置与风筝和旗杆PQ的顶点P在同一直线上.(1)如图①,已知旗杆PQ高为10米,若在B处测得旗杆顶点P的仰角为30°,在A处测得点P的仰角为45°,求A,B之间的距离;(2)如图②,在(1)的条件下,在A处测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC的长.23.一块三角形废料如图所示,∠A=30°,∠C=90°,AB=12.用这块废料剪出一个矩形CDEF,其中,点D、E、F分别在AC、AB、BC上.要使剪出的矩形CDEF面积最大,点E应选在何处?24.如图,把边长为4的等边三角形OAB置于平面直角坐标系中,点O与坐标原点重合,OB在x轴的负半轴上,点A在第二象限,AC⊥x轴于点C.(1)求点A的坐标;(2)设∠ABO的平分线交y轴于点D,请直接写出以BD为底边,底角为30°的等腰三角形BDH的顶点H的坐标;(3)将△ACB绕点C顺时针方向旋转得到△A′C′B′,设A′C′交直线OA于点E,当△COE的面积为时,求E点的坐标.25.如图,抛物线y=﹣x2+x+4与x轴和y轴的正半轴分别交于点A和B.(1)求点A,点B的坐标及AB的长;(2)已知M为AB的中点,∠PMQ在AB的同侧以点M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D,设AD的长为m(m>0),BC的长为n.①求n随m变化的函数解析式;②若点E(﹣k﹣1,﹣k2+1)在抛物线y=﹣x2+x+4上,且点E不在坐标轴上,当m,n为何值时,∠PMQ的边过点E?
2021年天津市和平区中考数学模拟试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin60°的值等于()A. B. C. D.1【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值直接解答即可.【解答】解:根据特殊角的三角函数值可知:sin60°=.故选C.2.一只口袋中放着若干只红球和白球,这两种球除了颜色以外没有任何其他区别,袋中的球已经搅匀,蒙上眼睛从口袋中取出一只球,取出红球的概率是.则取出白球的概率是()A. B. C. D.【考点】概率公式.【分析】根据概率的求法,找准两点:1、符合条件的情况数目;2、全部情况的总数;二者的比值就是其发生的概率;同时互为对立事件的两个事件概率之和为1.【解答】解:∵红球的概率是,∴取出白球的概率是1﹣=;故选A.3.一个几何体的三视图如下图所示,那么这个几何体是()A. B. C. D.【考点】由三视图判断几何体.【分析】由正视图和左视图可确定此几何体为柱体,锥体还是球体,再由俯视图可得具体形状.【解答】解:由正视图和左视图可确定此几何体为柱体,由俯视图是三角形可得此几何体为三棱柱.故选C.4.已知一元二次方程x2+x﹣1=0,下列判断正确的是()A.该方程有两个相等的实数根B.该方程有两个不相等的实数根C.该方程无实数根D.该方程根的情况不确定【考点】根的判别式.【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.【解答】解:∵a=1,b=1,c=﹣1,∴△=b2﹣4ac=12﹣4×1×(﹣1)=5>0,∴方程有两个不相等实数根.故选:B.5.若一个正六边形的周长为24,则该正六边形的面积为()A. B. C.12 D.24【考点】正多边形和圆.【分析】首先根据题意画出图形,即可得△OBC是等边三角形,又由正六边形ABCDEF的周长为24,即可求得BC的长,继而求得△OBC的面积,则可求得该六边形的面积.【解答】解:如图,连接OB,OC,过O作OM⊥BC于M,∴∠BOC=×360°=60°,∵OB=OC,∴△OBC是等边三角形,∵正六边形ABCDEF的周长为24,∴BC=24÷6=4,∴OB=BC=4,∴BM=BC=2,∴OM==2,∴S△OBC=×BC×OM=×4×2=4,∴该六边形的面积为:4×6=24.故选D.6.在Rt△ABC,∠C=90°,AB=2,AC=,则∠A=()A.75° B.60° C.45° D.30°【考点】解直角三角形.【分析】通过解该直角三角形得到∠B的度数,然后结合三角形内角和定理来求∠A的度数.【解答】解:∵∠C=90°,AB=2,AC=,∴sinB===,∴∠B=60°,∴∠A=180°﹣∠C﹣∠B=30°,故选D.7.已知反比例函数y=,当﹣3<x<﹣1时,y的取值范围是()A.y<0 B.﹣3<y<﹣1 C.﹣6<y<﹣2 D.2<y<6【考点】反比例函数的性质.【分析】利用反比例函数的性质,由x的取值范围并结合反比例函数的图象解答即可.【解答】解:∵k=6>0,∴在每个象限内y随x的增大而减小,又∵当x=﹣3时,y=﹣2,当x=﹣1时,y=﹣6,∴当﹣3<x<﹣1时,﹣6<y<﹣2.故选C.8.如图是由5个大小相同的小正方体搭成的几何体,它的左视图是()A. B. C. D.【考点】简单组合体的三视图.【分析】找到从几何体的左边看所得到的图形即可.【解答】解:左视图有2列,每列小正方形数目分别为2,1.故选:B.9.如图,用两根等长的钢条AC和BD交叉构成一个卡钳,可以用来测量工作内槽的宽度,设,且量得CD=b,则内槽的宽AB等于()A.mb B. C. D.【考点】相似三角形的应用.【分析】易知CD∥AB,可得△COD∽△AOB,它们的对应边成比例即可解答.【解答】解:∵,∠COD=∠AOB,∴△COD∽△BOA∴,又∵CD=b,∴AB=bm.故选A.10.复印纸的型号有A0、A1、A2、A3、A4等,它们之间存在着这样一种关系:将其中某一型号(如A3)的复印纸较长边的中点对折后,就能得到两张下一型号(A4)的复印纸,且得到的两个矩形都和原来的矩形相似(如图),那么这些型号的复印纸的长宽之比为()A.2:1 B.:1 C.:1 D.3:1【考点】相似多边形的性质.【分析】设这些型号的复印纸的长、宽分别为b、a,根据相似多边形的对应边的比相等列出比例式,计算即可.【解答】解:设这些型号的复印纸的长、宽分别为b、a,∵得到的矩形都和原来的矩形相似,∴=,则b2=2a2,∴=,∴这些型号的复印纸的长宽之比为:1,故选:B.11.直线l1和l2在同一直角坐标系中的位置如图所示,点P1(x1,y1)在直线l1上,点P2(x2,y2)在直线l2上,点P3(x3,y3)为直线l1、l2的交点,其中x3<x1,x3<x2,则()A.y1<y3<y2 B.y2<y1<y3 C.y2<y3<y1 D.y3<y1<y2【考点】一次函数图象上点的坐标特征;两条直线相交或平行问题.【分析】根据题意把三个点都表示到图象上,可以直观的得到y1、y2、y3的大小.【解答】解:根据题意把P1(x1,y1)、点P2(x2,y2)、点P3(x3,y3)表示到图象上,如图所示:故y1<y3<y2,故选:A.12.如图,一次函数的图象上有两点A、B,A点的横坐标为2,B点的横坐标为a(0<a<4且a≠2),过点A、B分别作x的垂线,垂足为C、D,△AOC、△BOD的面积分别为S1、S2,则S1、S2的大小关系是()A.S1>S2 B.S1=S2 C.S1<S2 D.无法确定【考点】一次函数综合题.【分析】△AOC的面积S1已知,△BOD的面积S2可由关于a的函数表示,求出S2的取值范围,跟S1比较即可.【解答】解:由一次函数图象可得出A(2,1),则S1==1,S2==又0<a<4且a≠2,∴S2<1=S1,故选:A二、填空题(本大题共6小题,每小题3分,共18分)13.等边三角形绕它的中心至少旋转120度,才能和原图形重合.【考点】旋转对称图形.【分析】根据旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形作答即可.【解答】解:由于等边三角形三角完全相同,旋转时,只要使下一个角对准原角,就能重合,因为一圈360度,除以3,就得到120度.故答案为:120°.14.已知图中的曲线是反比例函数y=图象上的一支,如果A(a1,b1),B(a2,b2)两点在该反比例函数图象的同一支上,且a1>a2,那么b1<b2.【考点】反比例函数图象上点的坐标特征;反比例函数的性质.【分析】根据函数的图象得出m>0,在每个象限内,y随x的增大而减小,即可得出答案.【解答】解:∵根据图象可知:m>0,∴在每个象限内,y随x的增大而减小,∵A(a1,b1),B(a2,b2)两点在该反比例函数图象的同一支上,a1>a2,∵b1<b2,故答案为:<.15.一个透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同,摸出1个球,记下颜色后放回,并搅匀,再摸出1个球,则两次摸出的球恰好颜色不同的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球恰好颜色不同的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的球恰好颜色不同的有4种情况,∴两次摸出的球恰好颜色不同的概率是:.故答案为:.16.如图AB、AC是⊙O的两条弦,∠A=30°,过点C的切线与OB的延长线交于点D,则∠D的度数为30度.【考点】圆周角定理;三角形内角和定理.【分析】连接OC,则∠OCD=90°,由圆周角定理知,∠COB=2∠A=60°,即可求∠D=90°﹣∠COB=30°.【解答】解:连接OC,∴∠OCD=90°,∴∠COB=2∠A=60°,∴∠D=90°﹣∠COB=30°.17.若b=2a+3c,则抛物线y=ax2+bx+c与x轴的公共点的个数是2.【考点】抛物线与x轴的交点.【分析】运用判别式进行分析即可.【解答】解:抛物线y=ax2+bx+c,b=2a+3c,△=b2﹣4ac=4a2+12ac+9b2﹣4ac=(2a+2b)2+5b2,当b≠0时,△>0,此时抛物线与x轴由两个交点,当b=0时,2a+3c=0,由于a≠0,可得c≠0,此时:y=ax2+c,与x轴由2个交点,综上所述,抛物线y=ax2+bx+c与x轴的公共点的个数是2,故答案为:2.18.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图①,△ABC是顶角为36°的等腰三角形,这个三角形的三分线已经画出,判断△DAB与△EBC是否相似:是(填“是”或“否”);(2)如图②,△ABC中,AC=2,BC=3,∠C=2∠B,则△ABC的三分线的长为和.【考点】相似三角形的判定与性质;黄金分割.【分析】(1)根据相似三角形的判定定理即可得到结论.(2)根据等腰三角形的判定定理容易画出图形;根据∠B=α,则∠DCB=∠DCA=∠EAC=α,∠ADE=∠AED=2α,则△AEC∽△BDC,△ACD∽△ABC,得出对应边成比例,设AE=AD=x,BD=CD=y,得出方程组,解方程组即可.【解答】解:(1)是,故答案为:是;(2)如图3所示,CD、AE就是所求的三分线.设∠B=α,则∠DCB=∠DCA=∠EAC=α,∠ADE=∠AED=2α,此时△AEC∽△BDC,△ACD∽△ABC,设AE=AD=x,BD=CD=y,∵△AEC∽△BDC,∴x:y=2:3,∵△ACD∽△ABC,∴2:x=(x+y):2,所以联立得方程组,解得,即三分线长分别是和.故答案为:和.三、解答题(本大题共7小题,共66分,解答赢写出文字说明、演算步骤或推理过程)19.解下列方程:(1)x(x﹣1)+2(x﹣1)=0;(2)x2+1.5=3x.【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【分析】先观察再确定方法解方程,(1)用因式分解法,(2)利用求根公式法解方程.【解答】解:(1)x(x﹣1)+2(x﹣1)=0,(x﹣1)(x+2)=0,x﹣1=0,或x+2=0,x1=1,x2=﹣2;(2)x2+1.5=3x,整理,得x2﹣3x+1.5=0,∵△=9﹣4×1×1.5=3,∴x=,∴x1=,x2=.20.(1)抛物线的顶点在原点,且经过点(﹣2,8),求该抛物线的解析式.(2)如图,抛物线y=ax2+bx的顶点为A(﹣3,﹣3),且经过点P(t,0)(t≠0).y的最小值=﹣3;点P的坐标为(﹣6,0);当x>﹣3时,y随x的增大而增大.【考点】待定系数法求二次函数解析式;二次函数的最值.【分析】(1)设二次函数的解析式为y=ax2(a≠0),再把点(﹣2,8)代入求出a的值即可;(2)根据函数图象的顶点坐标可得出其最小值,再由函数图象经过原点,对称轴为直线x=﹣3可得出P点坐标,由函数图形可得出x>﹣3时函数的增减性.【解答】解:(1)设二次函数的解析式为y=ax2(a≠0),∵点(﹣2,8)在此函数的图象上,∴4a=8,解得a=2,∴抛物线的解析式为:为y=2x2;(2)∵抛物线y=ax2+bx的顶点为A(﹣3,﹣3),∴y的最小值=﹣3;∵抛物线经过原点,对称轴为x=﹣3,∴t=﹣6,∴P(﹣6,0).由函数图象可知,当x>﹣3时,y随x的增大而增大.故答案为:﹣3,(﹣6,0),增大.21.已知,AB是⊙O的直径,点P,C是⊙O上的点,△APO≌△CPO,(I)如图①,若∠PCB=36°,求∠OPC的大小;(Ⅱ)如图②,过点C作AP的垂线DE,垂足为点D,且CD是⊙O的切线,若PD=1,求⊙O的直径.【考点】切线的性质;全等三角形的性质.【分析】(1)根据同弧所对的圆周角相等,圆的半径都相等,由∠PCB=36°,可以推出∠OPC的大小;(2)根据题意可以得到OC∥AD,从而可以得到∠POA与∠POC的关系,从而可以得到△OCP的形状,由PD=1,通过转化可以得到CP的长,从而可以得到⊙O的直径.【解答】解:(1)∵△APO≌△CPO,∴∠A=∠PCO,∵∠A=∠PCB,∴∠PCO=∠PCB,∵OP=OC,∴∠OPC=∠PCO,∴∠OPC=∠PCB,又∵∠PCB=36°,∴∠OPC=36°;(2)∵CD是⊙O的切线,C为切点,∴DE⊥OC,∴∠OCD=∠OCE=90°,∵DE⊥AD∴∠ADE=90°,∴∠ADE=∠OCE,∴AD∥OC,∴∠APO=∠POC,∵△APO≌△CPO,∴∠APO=∠CPO,∴∠POC=∠CPO,∴OC=PC,∵OC=OP,∴OC=OP=PC,∴△OPC是等边三角形,∴∠OCP=60°,OC=PC,∵∠OCD=90°,∴∠PCD=∠OCD﹣∠PCO=30°,∵∠ADE=90°,PD=1,∴PC=2PD=2,∵OC=PC,∴OC=2,∴⊙O的直径是4.22.小唐同学在操场上放风筝,风筝从A处起飞,几分钟后便飞达C处,此时,在AQ延长线上B处的小宋同学,发现自己的位置与风筝和旗杆PQ的顶点P在同一直线上.(1)如图①,已知旗杆PQ高为10米,若在B处测得旗杆顶点P的仰角为30°,在A处测得点P的仰角为45°,求A,B之间的距离;(2)如图②,在(1)的条件下,在A处测得风筝的仰角为75°,若绳子在空中视为一条线段,求绳子AC的长.【考点】解直角三角形的应用-仰角俯角问题.【分析】(1)首先分析图形:根据题意构造直角三角形在直角三角形△BPQ中求出AQ的长度,然后求出AB=BQ+AQ;(2)过A作AE⊥BC于E,在Rt△ABE中,求出AE的长度,然后在△CAE中求出AC的长度;【解答】解:(1)在Rt△BPQ中,PQ=10米,∠B=30°,∴∠BPQ=90°﹣30°=60°,则BQ=tan60°×PQ=10,又在Rt△APQ中,∠PAB=∠APQ=45°,则AQ=tan45°×PQ=10,即AB=10+10(米);(2)过A作AE⊥BC于E,在Rt△ABE中,∠B=30°,AB=10+10,∴AE=sin30°×AB=(10+10)=5+5(米).∵∠CAD=75°,∠B=30°,∴∠C=45°,在Rt△CAE中,sin45°=,∴AC===5+5(米).23.一块三角形废料如图所示,∠A=30°,∠C=90°,AB=12.用这块废料剪出一个矩形CDEF,其中,点D、E、F分别在AC、AB、BC上.要使剪出的矩形CDEF面积最大,点E应选在何处?【考点】相似三角形的应用;二次函数的最值.【分析】首先在Rt△ABC中利用∠A=30°、AB=12,求得BC=6、AC的长,然后根据四边形CDEF是矩形得到EF∥AC从而得到△BEF∽△BAC,设AE=x,则BE=12﹣x.利用相似三角形成比例表示出EF、DE,然后表示出有关x的二次函数,然后求二次函数的最值即可.【解答】解:在Rt△ABC中,∠A=30°,AB=12,∴BC=6,AC=AB•cos30°=.∵四边形CDEF是矩形,∴EF∥AC.∴△BEF∽△BAC.∴.设AE=x,则BE=12﹣x..在Rt△ADE中,.矩形CDEF的面积S=DE•EF=•=(0<x<6).当时,S有最大值.∴点E应选在AB的中点处.24.如图,把边长为4的等边三角形OAB置于平面直角坐标系中,点O与坐标原点重合,OB在x轴的负半轴上,点A在第二象限,AC⊥x轴于点C.(1)求点A的坐标;(2)设∠ABO的平分线交y轴于点D,请直接写出以BD为底边,底角为30°的等腰三角形BDH的顶点H的坐标;(3)将△ACB绕点C顺时针方向旋转得到△A′C′B′,设A′C′交直线OA于点E,当△COE的面积为时,求E点的坐标.【考点】几何变换综合题.【分析】(1)由等边三角形的边长为4,求出OC,AC即可;(2)先判断出以BD为底边,底角为30°的等腰三角形BDH的顶点在直线AB上或x轴,分两种情况先设出点H的坐标,用HB=HD建立方程即可;(3)先设出点E的坐标,△COE的面积是以OC为底,点E的纵坐标的绝对值为高,建立方程求解即可.【解答】解:(1)∵△ABC是边长为4的等边三角形,∴OC=BC=0B=2,AC=2,∵点A在第二象限,∴A(﹣2,2),(2)∵等边三角形的∠ABO的平分线交y轴于点D,∴∠ABD=∠OBD=30°,设直线BD的解析式为y=x+b,直线AB的解析式为y=x+m,∵点B(﹣4,0)在直线BD和直线AB上,∴b=,m=4,∴直线BD的解析式为y=x+,直线AB的解析式为y=x+4,∴点D(0,)∵以BD为底边,底角为30°的等腰三角形BDH,∴点H可能在直线AB上,也可能在x轴上,①点H在x轴上时,设点H(n,0),∴n﹣(﹣4)=,∴n=﹣,∴H(﹣,0),②点H在直线AB上,设H(x,x+4),∴AH=DH,∴(x+4)2+(x+4)2=x2+(x+)2,∴x=﹣,∴H(﹣,),∴点H(﹣,0)或H(﹣,);(3)设直线OA解析式为y=kx,∵点A(﹣2,2)在直线OA上,∴k=﹣,∴直线OA解析式为y=﹣x,设点E(a,﹣a)∵OC=2,∴S△COE=×OC×|﹣a|=×2×|a|=,∴a1=,a2=﹣,∴E1(,﹣),E2(﹣,).25.如图,抛物线y=﹣x2+x+4与x轴和y轴的正半轴分别交于点A和B.(1)求点A,点B的坐标及AB的长;(2)已知M为AB的中点,∠PMQ在AB的同侧以点M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D,设AD的长为m(m>0),BC的长为n.①求n随m变化的函数解析式;②若点E(﹣k﹣1,﹣k2+1)在抛物线y=﹣x2+x+4上,且点E不在坐标轴上,当m,n为何值时,∠PMQ的边过点E?【考点】二次函数综合题.【分析】(1)由坐标轴上点的特点计算即可;(2)①判断出∠AMD=∠BCM,∠OAB=∠OBA得到△ADM∽△BMC,得出比例式即可;②E(﹣k﹣1,﹣k2+1)在抛物线y=﹣x2+x+4上,求出k值,然后分两种情况讨论.【解答】解:(1)令y=0,得到0=﹣x2+x+4,∴x1=﹣1,x2=4,∵点A在x轴正半轴,∴A(4,0),令x=0,得y=4,∴B(0,4),在Rt△AOB中,OA=4,OB=4,∴AB==4;(2)①由(1)有,OA=OB,∴∠OAB=∠OBA,∵∠AOB=90°,∴∠OAB=∠OBA=45°,∵∠PMA=∠OBA+∠BCM,∴∠AMD+∠CMD=∠ABO+∠BCM,∴∠AMD=∠BCM,∵∠OAB=∠OBA,∴△ADM∽△BMC,∴,由(1)有,AB=4,∵M为AB中点,∴AM=BM=2,∴,∴n=(m>0),②∵E(﹣k﹣1,﹣k2+1)在抛物线y=﹣x2+x+4上,∴k1=1,k2=3,当k=1时,﹣k﹣1=﹣2,﹣k2+1=0,∴(﹣2,0)在坐标轴上,不符合题意,当k=3时,﹣k﹣1=﹣4,﹣k2+1=﹣8,∴点E(﹣4,﹣8),设直线ME解析式为y=mx+n,∵点M(2,2),∴,∴,∴直线ME的解析式为y=x﹣,直线ME与x轴的交点为(,0)与y轴的交点为(0,﹣),当∠PMQ的边MP过点E(﹣4,﹣8),∴C(0,﹣),∴B(0,4),∴n=4﹣(﹣)=,m==,∴m=,n=,当∠PMQ的边MQ过点E(﹣4,﹣8),∴D(,0),∵A(4,0)∴m=AD=4﹣=,∵n==,∴m=,n=,即:m=,n=;m=,n=,2021年天津市河东区中考数学一模试卷一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算(﹣2)﹣5的结果等于()A.﹣7 B.﹣3 C.3 D.72.tan60°的值等于()A. B. C. D.3.如图是我国几家银行的标志,其中即是轴对称图形又是中心对称图形的有()A.2个 B.3个 C.4个 D.5个4.国家统计局的相关数据显示,2021年我国国民生产总值(GDP)约为67670000000000元,将67670000000000用科学记数法表示为()A.6.767×1013 B.6.767×1012 C.67.67×1012 D.6.767×5.如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是()A. B. C. D.6.估计的值在()A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间7.计算的结果是()A.a﹣b B.b﹣a C.1 D.﹣18.方程2(2x+1)(x﹣3)=0的两根分别为()A.和3 B.﹣和3 C.和﹣3 D.﹣和﹣39.如果点A、B、C、D所对应的数为a、b、c、d,则a、b、c、d的大小关系是()A.a<c<d<b B.b<d<a<c C.b<d<c<a D.d<b<c<a10.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是()A.68° B.20° C.28° D.22°11.若M(,y1)、N(,y2)、P(,y3)三点都在函数(k>0)的图象上,则y1、y2、y3的大小关系是()A.y2>y3>y1 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y12.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个互异实根.其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个二、填空题:本大题共6小题,每小题3分,共18分.13.2x3•(﹣x2)=.14.计算=.15.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率是.16.一次函数y=(m﹣3)x﹣2的图象经过二、三、四象限,则m的取值范围是.17.如图,正方形ABCD中,点E、F分别为AB、CD上的点,且AE=CF=AB,点O为线段EF的中点,过点O作直线与正方形的一组对边分别交于P、Q两点,并且满足PQ=EF,则这样的直线PQ(不同于EF)有条.18.如图所示,在每个边长都为1的小正方形组成的网格中,点A、B、C均为格点.(Ⅰ)线段AB的长度等于;(Ⅱ)若P为线段AB上的动点,以PC、PA为邻边的四边形PAQC为平行四边形,当PQ长度最小时,请你借助网格和无刻度的直尺画出该平行四边形,并简要说明你的作图方法(不要求证明).三、解答题:本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程.19.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.20.为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(Ⅰ)被抽样调查的学生有人,并不全条形统计图;(Ⅱ)每天户外活动时间的中位数是(小时);(Ⅲ)该校共有2000名学生,请估计该校每天户外活动时间超过1小时的学生有多少人?21.如图,⊙O的直径AB=6,C为圆周上一点,AC=3,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E.(1)求∠AEC的度数;(2)求证:四边形OBEC是菱形.22.如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)23.为了提高身体素质,有些人选择到专业的健身中心锻炼身体,某健身中心的消费方式如下:消费卡消费方式普通卡35元/次白金卡280元/张,凭卡免费消费10次再送2次钻石卡560元/张,凭卡每次消费不再收费以上消费卡使用年限均为一年,每位顾客只能购买一张卡,且只限本人使用(Ⅰ)若每年去该健身中心6次,应选择哪种消费方式更合算?(Ⅱ)设一年内去该健身中心健身x次(x为正整数),所需总费用为y元,请分别写出选择普通消费和白金卡消费的y与x的函数关系式;(Ⅲ)若某位顾客每年去该健身中心健身至少18次,请通过计算帮助这位顾客选择最合算的消费方式.24.在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图①);第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图②).如图②所示建立平面直角坐标系,请解答以下问题:(Ⅰ)设直线BM的解析式为y=kx,求k的值;(Ⅱ)若MN的延长线与矩形ABCD的边BC交于点P,设矩形的边AB=a,BC=b;(i)若a=2,b=4,求P点的坐标;(ii)请直接写出a、b应该满足的条件.25.如图,平面直角坐标系中,抛物线y=x2﹣2x与x轴交于O、B两点,顶点为P,连接OP、BP,直线y=x﹣4与y轴交于点C,与x轴交于点D.(Ⅰ)直接写出点B坐标;判断△OBP的形状;(Ⅱ)将抛物线沿对称轴平移m个单位长度,平移的过程中交y轴于点A,分别连接CP、DP;(i)若抛物线向下平移m个单位长度,当S△PCD=S△POC时,求平移后的抛物线的顶点坐标;(ii)在平移过程中,试探究S△PCD和S△POD之间的数量关系,直接写出它们之间的数量关系及对应的m的取值范围.
2021年天津市河东区中考数学一模试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算(﹣2)﹣5的结果等于()A.﹣7 B.﹣3 C.3 D.7【考点】1A:有理数的减法.【分析】根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:(﹣2)﹣5=(﹣2)+(﹣5)=﹣(2+5)=﹣7,故选:A.2.tan60°的值等于()A. B. C. D.【考点】T5:特殊角的三角函数值.【分析】求得60°的对边与邻边之比即可.【解答】解:在直角三角形中,若设30°对的直角边为1,则60°对的直角边为,tan60°==,故选D.3.如图是我国几家银行的标志,其中即是轴对称图形又是中心对称图形的有()A.2个 B.3个 C.4个 D.5个【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:中国银行标志:既是轴对称图形又是中心对称图形,符合题意;中国工商银行标志:既是轴对称图形又是中心对称图形,符合题意;中国人民银行标志:是轴对称图形,不是中心对称图形,不符合题意;中国农业银行标志:是轴对称图形,不是中心对称图形,不符合题意;中国建设银行标志:不是轴对称图形,也不是中心对称图形,不符合题意;故选:A4.国家统计局的相关数据显示,2021年我国国民生产总值(GDP)约为67670000000000元,将67670000000000用科学记数法表示为()A.6.767×1013 B.6.767×1012 C.67.67×1012 D.6.767×【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将67670000000000用科学记数法表示为:6.767×1013.故选:A.5.如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是()A. B. C. D.【考点】U2:简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看,圆锥看见的是:圆和点,两个正方体看见的是两个正方形.故答案为:C.6.估计的值在()A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间【考点】2B:估算无理数的大小.【分析】直接利用二次根式的性质得出的取值范围.【解答】解:∵<<,∴的值在4和5之间.故选:C.7.计算的结果是()A.a﹣b B.b﹣a C.1 D.﹣1【考点】6B:分式的加减法.【分析】几个分式相加减,根据分式加减法则进行运算,如果分母互为相反数则应将分母转化为其相反数后再进行运算.【解答】解:,故选D.8.方程2(2x+1)(x﹣3)=0的两根分别为()A.和3 B.﹣和3 C.和﹣3 D.﹣和﹣3【考点】A8:解一元二次方程﹣因式分解法.【分析】根据已知方程得出两个一元一次方程,求出方程的解即可.【解答】解:2(2x+1)(x﹣3)=0,2x+1=0,x﹣3=0,x1=﹣,x2=3,故选B.9.如果点A、B、C、D所对应的数为a、b、c、d,则a、b、c、d的大小关系是()A.a<c<d<b B.b<d<a<c C.b<d<c<a D.d<b<c<a【考点】18:有理数大小比较.【分析】根据数轴上右边的数大于左边的数,即可比较大小.【解答】解:由数轴可知,从左到右依次为:B,D,C,A,∵数轴上右边的数大于左边的数,∴b<d<c<a,故选:C.10.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是()A.68° B.20° C.28° D.22°【考点】R2:旋转的性质.【分析】先根据矩形的性质得∠BAD=∠ABC=∠ADC=90°,再根据旋转的性质得∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,然后根据四边形的内角和得到∠3=68°,再利用互余即可得到∠α的大小.【解答】解:∵四边形ABCD为矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°﹣∠2=68°,∴∠BAB′=90°﹣68°=22°,即∠α=22°.故选D.11.若M(,y1)、N(,y2)、P(,y3)三点都在函数(k>0)的图象上,则y1、y2、y3的大小关系是()A.y2>y3>y1 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y【考点】G6:反比例函数图象上点的坐标特征.【分析】将M(,y1)、N(,y2)、P(,y3)三点分别代入函数(k>0),求得y1、y2、y3的值,然后再来比较它们的大小.【解答】解:∵M(,y1)、N(,y2)、P(,y3)三点都在函数(k>0)的图象上,∴M(,y1)、N(,y2)、P(,y3)三点都满足函数关系式(k>0),∴y1=﹣2k,y2=﹣4k,y3=2k;∵k>0,∴﹣4k<﹣2k<2k,即y3>y1>y2.故选C.12.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个互异实根.其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个【考点】HA:抛物线与x轴的交点;H4:二次函数图象与系数的关系.【分析】利用抛物线的对称性得到抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间,则当x=﹣1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=﹣=1,即b=﹣2a,则可对②进行判断;利用抛物线的顶点的纵坐标为n得到=n,则可对③进行判断;由于抛物线与直线y=n有一个公共点,则抛物线与直线y=n﹣1有2个公共点,于是可对④进行判断.【解答】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.∴当x=﹣1时,y>0,即a﹣b+c>0,所以①正确;∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac﹣4an=4a(c﹣n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n﹣1有2个公共点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选C.二、填空题:本大题共6小题,每小题3分,共18分.13.2x3•(﹣x2)=﹣2x5.【考点】49:单项式乘单项式.【分析】根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.【解答】解:2x3•(﹣x2)=2×(﹣1)x3•x2=﹣2x5.故应填:﹣2x5.14.计算=30+12.【考点】79:二次根式的混合运算.【分析】利用完全平方公式计算即可.【解答】解:原式=(2)2+2×2×3+(3)2=12+12+18=30+12.故答案是:30+12.15.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率是.【考点】X4:概率公式.【分析】直接利用概率公式计算.【解答】解:投掷一次,朝上一面的数字是偶数的概率==.故答案为.16.一次函数y=(m﹣3)x﹣2的图象经过二、三、四象限,则m的取值范围是m<3.【考点】F7:一次函数图象与系数的关系.【分析】根据一次函数y=(m﹣3)x﹣2的图象经过二、三、四象限判断出m的取值范围即可.【解答】解:∵一次函数y=(m﹣3)x﹣2的图象经过二、三、四象限,∴m﹣3<0,∴m<3,故答案为:m<317.如图,正方形ABCD中,点E、F分别为AB、CD上的点,且AE=CF=AB,点O为线段EF的中点,过点O作直线与正方形的一组对边分别交于P、Q两点,并且满足PQ=EF,则这样的直线PQ(不同于EF)有3条.【考点】LE:正方形的性质;KD:全等三角形的判定与性质.【分析】能画3条:①与EF互相垂直且垂足为O,构建直角三角形,可以证明两直角三角形全等得EF=PQ;②在AD上截取AP=AD,连接PO延长得到PQ;③同理在AB了截取BQ=AB,连接QO并延长得到PQ.【解答】解:这样的直线PQ(不同于EF)有3条,①如图1,过O作PQ⊥EF,交AD于P,BC于Q,则PQ=EF;②如图2,以点A为圆心,以AE为半径画弧,交AD于P,连接PO并延长交BC于Q,则PQ=EF;③如图3,以B为圆心,以AE为半径画弧,交AB于Q,连接QO并延长交DC于点P,则PQ=EF.18.如图所示,在每个边长都为1的小正方形组成的网格中,点A、B、C均为格点.(Ⅰ)线段AB的长度等于5;(Ⅱ)若P为线段AB上的动点,以PC、PA为邻边的四边形PAQC为平行四边形,当PQ长度最小时,请你借助网格和无刻度的直尺画出该平行四边形,并简要说明你的作图方法(不要求证明).【考点】N4:作图—应用与设计作图;KQ:勾股定理;L7:平行四边形的判定与性质.【分析】(Ⅰ)根据勾股定理可求线段AB的长度;(Ⅱ)取格点D、E、F,连结DE与AB交于点P,延长ED与CF交于点,四边形PAQC即为所求.【解答】解:(Ⅰ)线段AB的长度为:=5;(Ⅱ)如图所示:四边形PAQC即为所求.故答案为:5.三、解答题:本大题共7小题,共66分,解答应写出文字说明、演算步骤或推理过程.19.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得x<2;(Ⅱ)解不等式②,得x≥﹣1;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为﹣1≤x<2.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,将不等式的解集表示在数轴上,即可确定不等式组的解集.【解答】解:解不等式①,得:x<2,解不等式②,得:x≥﹣1,把不等式①和②的解集表示在数轴上如下:故不等式组的解集为:﹣1≤x<2,故答案为:(Ⅰ)x<2;(Ⅱ)x≥﹣1;(Ⅳ)﹣1≤x<2.20.为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(Ⅰ)被抽样调查的学生有500人,并不全条形统计图;(Ⅱ)每天户外活动时间的中位数是1(小时);(Ⅲ)该校共有2000名学生,请估计该校每天户外活动时间超过1小时的学生有多少人?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图;W4:中位数.【分析】(1)根据条形统计图和扇形统计图可以求得被调查学生总数和1.5小时的学生数,从而可以将条形统计图补充完整;(2)根据条形统计图可以得到这组数据的中位数;(3)根据条形统计图可以求得校共有2000名学生,该校每天户外活动时间超过1小时的学生有多少人.【解答】解:(1)∵0.5小时的有100人占被调查总人数的20%,∴被调查的人数有:100÷20%=500,1.5小时的人数有:500﹣100﹣200﹣80=120,补全的条形统计图如下图所示,故答案为:500;(2)由(1)可知被调查学生500人,由条形统计图可得,中位数是1小时,故答案为:1;(3)由题意可得,该校每天户外活动时间超过1小时的学生数为:×2000=800人,即该校每天户外活动时间超过1小时的学生有800人.21.如图,⊙O的直径AB=6,C为圆周上一点,AC=3,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点E.(1)求∠AEC的度数;(2)求证:四边形OBEC是菱形.【考点】MC:切线的性质;L9:菱形的判定.【分析】(1)由直径AB的长,求出半径OA及OC的长,再由AC的长,得到△OAC三边相等,可得此三角形为等边三角形,根据等边三角形的性质得到∠AOC=60°,再根据同弧所对的圆心角等于所对圆周角的2倍,即可得出∠AEC的度数;(2)由直线l与圆O相切,根据切线的性质得到OC与直线l垂直,又BD与直线l垂直,根据在同一平面内,垂直于同一条直线的两直线平行得到BE∥OC,根据两直线平行同位角相等,可得出∠B=∠AOC=60°,再由AB为圆O的直径,根据直径所对的圆周角为直角,可得出∠AED=90°,再求出∠DEC=60°,可得出∠B=∠DEC,根据同位角相等两直线平行,可得出EC∥OB平行,根据两组对边平行的四边形为平行四边形可得出四边形OBEC为平行四边形,再由半径OC=OB,根据邻边相等的平行四边形为菱形可得出OBEC为菱形.【解答】解:(1)∵OA=OC=AB=3,AC=3,∴OA=OC=AC,∴△OAC为等边三角形,∴∠AOC=60°,∵圆周角∠AEC与圆心角∠AOC都是,∴∠AEC=∠AOC=30°;(2)∵直线l切⊙O于C,∴OC⊥CD,又∵BD⊥CD,∴OC∥BD,∴∠B=∠AOC=60°,∵AB为⊙O直径,∴∠AEB=90°,又∵∠AEC=30°,∴∠DEC=90°﹣∠AEC=60°,∴∠B=∠DEC,∴CE∥OB,∴四边形OBCE为平行四边形,又∵OB=OC,∴四边形OBCE为菱形.22.如图,小东在教学楼距地面9米高的窗口C处,测得正前方旗杆顶部A点的仰角为37°,旗杆底部B点的俯角为45°,升旗时,国旗上端悬挂在距地面2.25米处,若国旗随国歌声冉冉升起,并在国歌播放45秒结束时到达旗杆顶端,则国旗应以多少米/秒的速度匀速上升?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】通过解直角△BCD和直角△ACD分别求得BD、CD以及AD的长度,则易得AB的长度,则根据题意得到整个过程中旗子上升高度,由“速度=”进行解答即可.【解答】解:在Rt△BCD中,BD=9米,∠BCD=45°,则BD=CD=9米.在Rt△ACD中,CD=9米,∠ACD=37°,则AD=CD•tan37°≈9×0.75=6.75(米).所以,AB=AD+BD=15.75米,整个过程中旗子上升高度是:15.75﹣2.25=13.5(米),因为耗时45s,所以上升速度v==0.3(米/秒).答:国旗应以0.3米/秒的速度匀速上升.23.为了提高身体素质,有些人选择到专业的健身中心锻炼身体,某健身中心的消费方式如下:消费卡消费方式普通卡35元/次白金卡280元/张,凭卡免费消费10次再送2次钻石卡560元/张,凭卡每次消费不再收费以上消费卡使用年限均为一年,每位顾客只能购买一张卡,且只限本人使用(Ⅰ)若每年去该健身中心6次,应选择哪种消费方式更合算?(Ⅱ)设一年内去该健身中心健身x次(x为正整数),所需总费用为y元,请分别写出选择普通消费和白金卡消费的y与x的函数关系式;(Ⅲ)若某位顾客每年去该健身中心健身至少18次,请通过计算帮助这位顾客选择最合算的消费方式.【考点】FH:一次函数的应用.【分析】(Ⅰ)根据普通消费方式,算出健身6次的费用,再与280、560进行比较,即可得出结论;(Ⅱ)根据“普通消费费用=35×次数”即可得出y普通关于x的函数关系式;再根据“白金卡消费费用=卡费+超出部分的费用”即可得出y白金卡关于x的函数关系式;(Ⅲ)先算出健身18次普通消费和白金卡消费两种形式下的费用,再令白金卡消费费用=钻石卡消费的卡费,算出二者相等时的健身次数,由此即可得出结论.【解答】解:(Ⅰ)35×6=210(元),∵210<280<560,∴选择普通消费方式更合算.(Ⅱ)根据题意得:y普通=35x.当x≤12时,y白金卡=280;当x>12时,y白金卡=280+35(x﹣12)=35x﹣140.∴y白金卡=.(Ⅲ)当x=18时,y普通=35×18=630;y白金卡=35×18﹣140=490;令y白金卡=560,即35x﹣140=560,解得:x=20.当18≤x≤19时,选择白金卡消费最合算;当x=20时,选择白金卡消费和钻石卡消费费用相同;当x≥21时,选择钻石卡消费最合算.24.在我们学习过的数学教科书中,有一个数学活动,其具体操作过程是:第一步:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开(如图①);第二步:再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN(如图②).如图②所示建立平面直角坐标系,请解答以下问题:(Ⅰ)设直线BM的解析式为y=kx,求k的值;(Ⅱ)若MN的延长线与矩形ABCD的边BC交于点P,设矩形的边AB=a,BC=b;(i)若a=2,b=4,求P点的坐标;(ii)请直接写出a、b应该满足的条件.【考点】FI:一次函数综合题.【分析】(Ⅰ)连接AN,延长MN交BC于点P,由折叠的性质可证△BMP为等边三角形,由M点的坐标可求得k的值;(Ⅱ)(i)在Rt△ABM中,由三角形的性质可求得BM的长,则可求得BP的长,可求得P点坐标;(ii)由题意可知BC≥BP,在Rt△BNP中,由三角函数的定义可用a表示出BP,则可得到a、b所满足的条件.【解答】解:(Ⅰ)连接AN,延长MN交BC于点P,如图,∴EF垂直平分AB,∴AN=BN,由折叠知AB=BN,∴AN=AB=BN,∴△ABN为等边三角形,∴∠ABN=60°,∴∠PBN=30°,∵∠ABM=∠NBM=30°,∴∠BNM=∠A=90°,∴∠BPN=60°,∠MBP=∠MBN+∠PBN=60°,∴∠BMP=60°,∴∠MBP=∠BMP=∠BPM=60°,∴△BMP是等边三角形,∵点M在直线y=kx上,∴k==tan60°=;(Ⅱ)(i)由题意可知AB=a=2,在Rt△ABM中,cos∠ABM=,∴=,解得BM=,∴BP=BM=,∴P(,0);(ii)由题意可知BC≥BP,在Rt△BNP中,BN=BA=a,∠PBN=30°,∴BP=,∴b≥,∴a≤b.25.如图,平面直角坐标系中,抛物线y=x2﹣2x与x轴交于O、B两点,顶点为P,连接OP、BP,直线y=x﹣4与y轴交于点C,与x轴交于点D.(Ⅰ)直接写出点B坐标(2,0);判断△OBP的形状等腰直角三角形;(Ⅱ)将抛物线沿对称轴平移m个单位长度,平移的过程中交y轴于点A,分别连接CP、DP;(i)若抛物线向下平移m个单位长度,当S△PCD=S△POC时,求平移后的抛物线的顶点坐标;(ii)在平移过程中,试探究S△PCD和S△POD之间的数量关系,直接写出它们之间的数量关系及对应的m的取值范围.【考点】HF:二次函数综合题.【分析】(Ⅰ)根据自变量与函数值得对应关系,可得B点坐标,根据配方法,可得顶点坐标,根据勾股定理及勾股定理的逆定理,可得答案;(Ⅱ)根据自变量与函数值得对应关系,可得C,D,M点坐标,根据平移规律,可得P点坐标,根据平行于y轴的直线上两点间的距离较大的纵坐标减较小的纵坐标,可得PM的长,(i)根据面积的关系,可得关于m的方程,根据解方程,可得到顶点坐标;(ii)根据三角形的面积,可得答案.【解答】解:(Ⅰ)当y=0时,x2﹣2x=0,解得x=0(舍)或x=2,即B点坐标为(2,0),∵抛物线y=x2﹣2x=(x﹣1)2﹣1,∴P点坐标为(1,﹣1),由勾股定理,得OP2=(2﹣1)2+12=2,∴OP2+BP2=OB2,OP=BP,∴△OBP是等腰直角三角形,故答案为:(2,0),等腰直角三角形;(Ⅱ)∵直线y=x﹣4与y轴交于点C,与x轴交于点D,∴C(0,﹣4),D(4,0),当x=1时,y=﹣3,即M(1,﹣3),抛物线向下平移m个单位长度,解析式为y=(x﹣1)2﹣(1+m),P(1,﹣1﹣m),∴PM=|﹣(1+m)+3|=|m﹣2|,S△PCD=S△PMC+S△PMD=•PM•|xP﹣xC|=•|m﹣2|×4=2|m﹣2|,(i)S△POC=•AC•|xP|=×4×1=2,∵S△PCD=S△POC,∴S△PCD=2|m﹣2|=2,解得m=2+或m=2﹣,∴P(1,﹣3﹣)或(1,﹣3+);(ii)S△POD=OD•|yP|=×4×|1﹣(1+m)|=2|m+1|,①当m≥2时,S△PCD=2|m﹣2|=2m﹣4,S△POD=2|m+1|=2m+2,∴S△POD﹣S△PCD=6②当﹣1≤m<2时,S△PCD=2|m﹣2=4﹣2m,S△POD=2|m+1|=2m+2,∴S△POD+S△PCD=6③当m<﹣1时,S△PCD=2|m﹣2|=4﹣2m,S△POD=2|m+1|=2﹣2m,∴S△POD﹣S△PCD=6,综上所述:当m≥2时,S△POD﹣S△PCD=6;当﹣1≤m<2时,S△POD+S△PCD=6;当m<﹣1时,S△POD﹣S△PCD=6.天津市和平区2021-2021年九年级中考数学综合训练题二1.下列运算:sin30°=,.其中运算结果正确的个数为()A.4 B.3 C.2 D.12.顺次连接矩形ABCD各边的中点,所得四边形必定是()A.邻边不等的平行四边形B.矩形C.正方形D.菱形3.某校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,得出下列结论:(1)接受这次调查的家长人数为200人;(2)在扇形统计图中,“不赞同”的家长部分所对应的扇形圆心角大小为162°;(3)表示“无所谓”的家长人数为40人;(4)随机抽查一名接受调查的家长,恰好抽到“很赞同”的家长的概率是.其中正确的结论个数为()A.4 B.3 C.2 D.14.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AM的长为1.2km,则M,C两点间的距离为()A.0.5kmB.0.6kmC.0.9km5.已知不等式组的解集中共有5个整数,则a的取值范围为()A.7<a≤8B.6<a≤7C.7≤a<8D.7≤a≤86.若等腰直角三角形的外接圆半径的长为2,则其内切圆半径的长为()A. B. C. D.—17.如图,在直角∠O的内部有一滑动杆AB.当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动.如果滑动杆从图中AB处滑动到A'B'处,那么滑动杆的中点C所经过的路径是()A.直线的一部分 B.圆的一部分 C.双曲线的一部分 D.抛物线的一部分8.如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数、的图象交于B、A两点,则∠OAB大小的变化趋势为()A.逐渐变小B.逐渐变大C.时大时小D.保持不变9.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB,BC,CA,OA,OB,OC组成。为记录寻宝者的进行路线,在BC的中点M处放置了一台定位仪器,设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为()A.A→O→BB.B→A→CC.B→O→CD.C→B→O10.计算=11.已知,则=12.分解因式:5x2-10x2=5x=_________.13.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为14.用2、3、4三个数字排成一个三位数,则排出的数是偶数的概率为15.一个容器盛满纯药液40L,第一次倒出如干后,用水加满;第二次又倒出同样体积的溶液,这时容器里只剩下纯药液10L,则每次倒出的液体是L.16.如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 桥梁隔震施工合同范例
- 手机短视频内容创作合同20243篇
- 2024专项高效率生产线销售协议版B版
- 2024年度商业物业托管服务协议版B版
- 二零二四年度电子产品设计开发与生产服务合同
- 2024至2030年并柜螺杆项目投资价值分析报告
- 2024至2030年回转窑燃烧系统项目投资价值分析报告
- 2024至2030年卧式蒸汽杀菌锅项目投资价值分析报告
- 2024至2030年全自动基板切割机项目投资价值分析报告
- 2024至2030年三节鞭项目投资价值分析报告
- 2025年国家外汇管理局中央外汇业务中心公开招聘笔试核心备考题库及答案解析
- 2024年郑州农业发展集团有限公司校园招聘工作人员6人笔试核心备考题库及答案解析
- 中南大学《油气田开发地质学》2023-2024学年第一学期期末试卷
- 自考《计算机应用基础》高等教育自学考试试卷及答案指导
- 2024年山东菏泽文化旅游投资集团限公司权属公司招聘56人管理单位遴选500模拟题附带答案详解
- 湖北省鄂东南省级示范高中教育教学改革联盟学校2024-2025学年高一上学期期中联考数学试题 含解析
- 2024年新人教版八年级上册物理全册教案
- 安全警示教育的会议记录内容
- 人力资源外包投标方案
- MOOC 计量经济学-西南财经大学 中国大学慕课答案
- 2024食品安全法ppt培训课件全新
评论
0/150
提交评论