版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省南阳市永昌中学高一数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知f(x)=2x+3,g(x+2)=f(x),则g(x)等于() A.2x+1 B.2x﹣1 C.2x﹣3 D.2x+7参考答案:B【考点】函数解析式的求解及常用方法. 【专题】计算题. 【分析】先根据f(x)的解析式求出g(x+2)的解析式,再用x代替g(x+2)中的x+2,即可得到g(x)的解析式. 【解答】解:∵f(x)=2x+3,g(x+2)=f(x), ∴g(x+2)=2x+3=2(x+2)﹣1, ∴g(x)=2x+3=2x﹣1 故选B 【点评】本题主要考查了由f(x)与一次函数的复合函数的解析式求f(x)的解析式,关键是在g(x+2)中凑出x+2,再用x代替 x+2即可. 2.三棱柱的侧棱AA1和BB1上各有一动点P,Q满足A1P=BQ,过P、Q、C三点的截面把棱柱分成两部分,则其体积比为()A.3:1 B.2:1 C.4:1 D.参考答案:B【考点】LF:棱柱、棱锥、棱台的体积.【分析】由已知中三棱柱的侧棱AA1和BB1上各有一动点P,Q满足A1P=BQ,我们可得四边形PQBA与四边形PQB1A1的面积相等,等于侧面ABPQB1A1的面积的一半,根据等底同高的棱锥体积相等,可将四棱椎C﹣PQBA的体积转化三棱锥C﹣ABA1的体积,进而根据同底同高的棱锥体积为棱柱的,求出四棱椎C﹣PQBA的体积,进而得到答案.【解答】解:设三棱柱ABC﹣A1B1C1的体积为V∵侧棱AA1和BB1上各有一动点P,Q满足A1P=BQ,∴四边形PQBA与四边形PQB1A1的面积相等故四棱椎C﹣PQBA的体积等于三棱锥C﹣ABA1的体积等于V则四棱椎C﹣PQB1A1的体积等于V故过P、Q、C三点的截面把棱柱分成两部分,则其体积比为2:1故选B【点评】本题考查的知识点是棱柱的体积,棱锥的体积,其中根据四边形PQBA与四边形PQB1A1的面积相等,等于侧面ABPQB1A1的面积的一半,将四棱椎C﹣PQBA的体积转化三棱锥C﹣ABA1的体积,进而根据同底同高的棱锥体积为棱柱的,求出上下两部分的体积,是解答本题的关键.3.在R上定义运算:=ad-bc,若不等式≥1对任意实数x恒成立,则实数a的最大值为()A.- B.- C. D.参考答案:D【分析】先根据定义化简不等式,并参变分离得x2-x+1≥a2-a,根据恒成立转化为x2-x+1最小值不小于a2-a,最后根据二次函数性质求最小值,得关于a不等式,解不等式得结果.【详解】由定义知,不等式≥1等价于x2-x-(a2-a-2)≥1,所以x2-x+1≥a2-a对任意实数x恒成立.因为x2-x+1=+≥,所以a2-a≤,解得-≤a≤,则实数a的最大值为.选D.【点睛】对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法,使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.4.在△ABC中,已知a=1,b=,A=30°,则sinC的值为()A.或1 B. C. D.1参考答案:A【考点】HP:正弦定理.【分析】由余弦定理可得:12=c2+﹣2ccos30°,解得c.再利用正弦定理即可得出.【解答】解:由余弦定理可得:12=c2+﹣2ccos30°,化为:c2﹣3c+2=0,解得c=1或2.由正弦定理可得:=,化为:sinC=c,∴sinC=或1.故选:A.5.定义在R上的函数f(x),且f(x),f(x+1)都是偶函数,当x∈[﹣1,0)时,则f(log28)等于(
)A.3 B. C.﹣2 D.2参考答案:D【考点】函数奇偶性的性质;函数的值.【专题】计算题;转化思想;综合法;函数的性质及应用.【分析】由函数f(x+1)是偶函数,可得f(﹣x+1)=f(x+1变形得到函数的周期,然后利用函数的周期性把f(log28)转化为求给出的函数解析式范围内的值,从而得到答案.【解答】解:由f(x+1)是偶函数,可得f(﹣x+1)=f(x+1),则函数f(x)为周期为2的周期函数,∴f(log28)=f(3log22)=f(3)=f(3﹣4)=f(﹣1).又当x∈[﹣1,0]时,,∴f(log28)=f(﹣1)=2.故选:D.【点评】本题考查了函数的周期性,考查了函数奇偶性的性质,考查了学生灵活分析问题和解决问题的能力,是中档题.6.(5分)如果扇形圆心角的弧度数为2,圆心角所对的弦长也为2,那么这个扇形的面积是() A. B. C. D. 参考答案:A考点: 扇形面积公式.专题: 计算题;三角函数的求值.分析: 解直角三角形AOC,求出半径AO,代入弧长公式求出弧长的值,再求扇形的面积即可.解答: 如图:∠AOB=2,过点0作OC⊥AB,C为垂足,并延长OC交于D,∠AOD=∠BOD=1,AC=AB=1,Rt△AOC中,AO=,从而弧长为α?r=,面积为××=故选A.点评: 本题考查扇形的面积、弧长公式的应用,解直角三角形求出扇形的半径AO的值,是解决问题的关键.7.在中,,则A的取值范围是(
)A.
B.
C
D.参考答案:C8.若m>n,则()A.0.2m<0.2n B.log0.3m>log0.3nC.2m<2n D.m2>n2参考答案:A【考点】函数单调性的性质.【专题】函数思想;转化法;函数的性质及应用.【分析】根据指数函数和对数函数的单调性,进行判断即可.【解答】解:∵y=0.2x为减函数,∴若m>n,则0.2m<0.2n正确,∵y=log0.3x为减函数,∴若m>n,则log0.3m<log0.3n,或对数函数不存在,错误∵y=2x为增函数,∴若m>n,则2m>2n,错误当m=1,n=﹣1时,满足m>n,但m2>n2不成立,故选:A【点评】本题主要考查函数值的大小比较,根据指数函数和对数函数的单调性是解决本题的关键.比较基础.9.若,则有()A.
B.
C.
D.参考答案:D10.设则有(
)A.
B.
C.
D.
参考答案:B∵a=cos6°+sin6°=sin30°cos6°+cos30°sin6°=sin36°,b==c==∵0°<34°<35°<36°<90°,∴sin36°>sin35°>sin34°,即b<c<a.故答案为:B
二、填空题:本大题共7小题,每小题4分,共28分11.将八进制数123(8)化为十进制数,结果为__________.参考答案:83考点:进位制.专题:计算题;算法和程序框图.分析:利用累加权重法,即可将四进制数转化为十进制,从而得解.解答: 解:由题意,123(4)=1×82+2×81+3×80=83,故答案为:83.点评:本题考查四进制与十进制之间的转化,熟练掌握四进制与十进制之间的转化法则是解题的关键,属于基本知识的考查12.棱长为1的正方体的八个顶点都在同一个球面上,则此球的表面积为.参考答案:3π【考点】球内接多面体;球的体积和表面积.【分析】棱长为1的正方体的八个顶点都在同一个球面上,球的直径是正方体的对角线,知道棱长为1的正方体的对角线是,做出半径,利用圆的表面积公式得到结果.【解答】解:∵棱长为1的正方体的八个顶点都在同一个球面上,∴球的直径是正方体的对角线,∴球的半径是r=,∴球的表面积是4×=3π故答案为:3π13.比较大小:
则从小到大的顺序为
参考答案:c<a<b
14.记的反函数为,则方程的解
.参考答案:解法1由,得,即,于是由,解得解法2因为,所以15.设函数,若,则关于的方程的解的个数为_____个参考答案:316.如图,圆锥中,为底面圆的两条直径,交于,且,,为的中点,则异面直线与所成角的正切值为________参考答案:17.若一组样本数据的平均数为10,则该组样本数据的方差为______.参考答案:2【分析】先利用平均数算出的值,再利用公式计算方差.【详解】,故,所以方差,填.【点睛】样本数据的方差的计算有两种方法:(1);(2).
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知:四边形ABCD是空间四边形,E,H分别是边AB,AD的中点,F,G分别是边CB,CD上的点,且,求证FE和GH的交点在直线AC上.参考答案:连结BD,∵E,H分别是边AB,AD的中点,∴//············2分又∵,∴//因此//且≠故四边形是梯形;
·················4分
所以,相交,设∵平面ABC,∴平面ABC同理平面ACD,
··································6分又平面平面ACD∴故FE和GH的交点在直线AC上.
······························8分19.定义在上的函数满足:(1)对任意,都有(2)当时,有,求证:(Ⅰ)是奇函数;(Ⅱ)参考答案:(1)令,则,再令则所以是奇函数.………………5分20.已知函数.(1)当时,恒成立,求实数的取值范围;(2)当时,恒成立,求实数的取值范围.参考答案:(1)(2)试题分析:(1)二次函数在上的恒成立问题,转化为利用求解.(2)二次函数在闭区间上的恒成立问题,运用对称轴与区间的相对关系利用单调性求解.试题解析:(1),当时恒成立,
当时恒成立,……………2分
即化简得,……………5分
解得.……………7分(2)当时恒成立(i)无解.……………9分(ii)解得.……………11分(iii)解得……………13分所以……………15分考点:1.二次函数图像性质;2.在上的恒成立问题;3.闭
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论