




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省宣城市宣州区水阳中学2024届九年级数学第一学期期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列方程中是一元二次方程的是()A.xy+2=1 B.C.x2=0 D.ax2+bx+c=02.用配方法解一元二次方程ax2+bx+c=0(a≠0),此方程可变形为()A. B.C. D.3.如图,在平面直角坐标系中,菱形的边在轴的正半轴上,反比例函数的图象经过对角线的中点和顶点.若菱形的面积为12,则的值为().A.6 B.5 C.4 D.34.已知二次函数,则下列说法:①其图象的开口向上;②其图象的对称轴为直线;③其图象顶点坐标为;④当时,随的增大而减小.其中说法正确的有()A.1个 B.2个 C.3个 D.4个5.如图,传送带和地面成一斜坡,它把物体从地面送到离地面5米高的地方,物体所经过路程是13米,那么斜坡的坡度为()A.1:2.6 B.1: C.1:2.4 D.1:6.如图,一个透明的玻璃正方体表面嵌有一根黑色的铁丝.这根铁丝在正方体俯视图中的形状是()A. B. C. D.7.已知△ABC的外接圆⊙O,那么点O是△ABC的()A.三条中线交点 B.三条高的交点C.三条边的垂直平分线的交点 D.三条角平分线交点8.如图,点G是△ABC的重心,下列结论中正确的个数有()①;②;③△EDG∽△CBG;④.A.1个 B.2个 C.3个 D.4个9.下列方程中,是一元二次方程的是()A.x+=0 B.ax2+bx+c=0 C.x2+1=0 D.x﹣y﹣1=010.关于x的一元二次方程2x2﹣mx﹣3=0的一个解为x=﹣1,则m的值为()A.﹣1 B.﹣3 C.5 D.1二、填空题(每小题3分,共24分)11.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是21,则每个支干长出_____.12.若一个三角形的两边长分别是4和6,第三边的长是方程x2﹣17x+60=0的一个根,则该三角形的第三边长是_____.13.如图,在△ABC中,DE∥BC,,则=_____.14.如图,在△ABC中,∠C=90°,∠A=α,AC=20,请用含α的式子表示BC的长___________.15.一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同,从中随机摸出一个球,摸到红球的概率是______.16.计算:2sin30°+tan45°=_____.17.如图,在菱形ABCD中,∠B=60º,E是CD上一点,将△ADE折叠,折痕为AE,点D的对应点为点D’,AD’与BC交于点F,若F为BC中点,则∠AED=______.18.我国古代数学著作《增删算法统宗》记载“圆中方形”问题:“今有圆田一段,中间有个方池,丈量田地待耕犁,恰好三分在记,池面至周有数,每边三步无疑,内方圆径若能知,堪作算中第一.”其大意为:有一块圆形的田,中间有一块正方形水池,测量出除水池外圆内可耕地的面积恰好72平方步,从水池边到圆周,每边相距3步远.如果你能求出正方形的边长是x步,则列出的方程是_______________.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,的三个顶点都在格点上,点的坐标为,请解答下列问题:(1)画出关于轴对称的,点的坐标为______;(2)在网格内以点为位似中心,把按相似比放大,得到,请画出;若边上任意一点的坐标为,则两次变换后对应点的坐标为______.20.(6分)如图,一位篮球运动员在离篮圈水平距离4处跳起投篮,球运行的高度()与运行的水平距离()满足解析式,当球运行的水平距离为1.5时,球离地面高度为2.2,球在空中达到最大高度后,准确落入篮圈内.已知篮圈中心离地面距离为2.35.(1)当球运行的水平距离为多少时,达到最大高度?最大高度为多少?(2)若该运动员身高1.8,这次跳投时,球在他头顶上方3.25处出手,问球出手时,他跳离地面多高?21.(6分)用铁片制作的圆锥形容器盖如图所示.(1)我们知道:把平面内线段OP绕着端点O旋转1周,端点P运动所形成的图形叫做圆.类比圆的定义,给圆锥下定义;(2)已知OB=2cm,SB=3cm,①计算容器盖铁皮的面积;②在一张矩形铁片上剪下一个扇形,用它围成该圆锥形容器盖.以下是可供选用的矩形铁片的长和宽,其中可以选择且面积最小的矩形铁片是.A.6cm×4cmB.6cm×4.5cmC.7cm×4cmD.7cm×4.5cm22.(8分)中,∠ACB=90°,AC=BC,D是BC上一点,连接AD,将线段AD绕着点A逆时针旋转,使点D的对应点E在BC的延长线上。过点E作EF⊥AD垂足为点G,(1)求证:FE=AE;(2)填空:=__________(3)若,求的值(用含k的代数式表示).23.(8分)如图,在Rt△ABC中,∠ACB=90°.在斜边AB上取一点D,使CD=CB,圆心在AC上的⊙O过A、D两点,交AC于点E.(1)求证:CD是⊙O的切线;(2)若,且AE=2,求CE的长.24.(8分)如图,在同一平面直角坐标系中,正比例函数y=2x的图象与反比例函数y=的图象交于A,B两点,过点A作AC⊥x轴,垂足为点C,AC=2,求k的值.25.(10分)已知关于x的一元二次方程x2﹣(2k+3)x+k2+3k+2=0(1)试判断上述方程根的情况.(2)已知△ABC的两边AB、AC的长是关于上述方程的两个实数根,BC的长为5,当k为何值时,△ABC是等腰三角形.26.(10分)如图,抛物线的表达式为y=ax2+4ax+4a-1(a≠0),它的图像的顶点为A,与x轴负半轴相交于点B、点C(点B在点C左侧),与y轴交于点D,连接AO交抛物线于点E,且S△AEC:S△CEO=1:3.(1)求点A的坐标和抛物线表达式;(2)在抛物线的对称轴上是否存在一点P,使得△BDP的内心也在对称轴上,若存在,求点P的坐标;若不存在,请说明理由;(3)连接BD,点Q是y轴左侧抛物线上的一点,若以Q为圆心,为半径的圆与直线BD相切,求点Q的坐标.
参考答案一、选择题(每小题3分,共30分)1、C【解题分析】分析:本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是1;(1)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.详解:A.是二元二次方程,故本选项错误;B.是分式方程,不是整式方程,故本选项错误;C.是一元二次方程,故本选项正确;D.当a、b、c是常数,a≠0时,方程才是一元二次方程,故本选项错误.故选C.点睛:本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是1.2、A【解题分析】首先进行移项,然后把二次项系数化为1,再进行配方,方程左右两边同时加上一次项系数一半的平方,即可变形成左边是完全平方,右边是常数的形式.【题目详解】∵ax2+bx+c=0,∴ax2+bx=−c,∴x2+x=−,∴x2+x+=−+,∴(x+)2=.故选A.3、C【解题分析】首先设出A、C点的坐标,再根据菱形的性质可得D点坐标,再根据D点在反比例函数上,再结合面积等于12,解方程即可.【题目详解】解:设点的坐标为,点的坐标为,则,点的坐标为,∴,解得,,故选:C.【题目点拨】本题主要考查反比例函数和菱形的性质,关键在于菱形的对角线相互平分且垂直.4、B【分析】利用二次函数的图象和性质逐一对选项进行分析即可.【题目详解】①因为其图象的开口向上,故正确;②其图象的对称轴为直线,故错误;③其图象顶点坐标为,故错误;④因为抛物线开口向上,所以在对称轴右侧,即当时,随的增大而减小,故正确.所以正确的有2个故选:B.【题目点拨】本题主要考查二次函数的图象和性质,掌握二次函数的图象和性质是解题的关键.5、C【解题分析】根据题意作出合适的辅助线,由坡度的定义可知,坡度等于坡角对边与邻边的比值,根据题目中的数据可以得到坡度,本题得以解决.【题目详解】如图据题意得;AB=13、AC=5,则BC=,∴斜坡的坡度i=tan∠ABC==1∶2.4,故选C.6、A【解题分析】从上面看得到的图形是A表示的图形,故选A.7、C【分析】根据三角形外接圆圆心的确定方法,结合垂直平分线的性质,即可求得.【题目详解】已知⊙O是△ABC的外接圆,那么点O一定是△ABC的三边的垂直平分线的交点,故选:C.【题目点拨】本题考查三角形外接圆圆心的确定,属基础题.8、D【分析】根据三角形的重心的概念和性质得到AE,CD是△ABC的中线,根据三角形中位线定理得到DE∥BC,DE=BC,根据相似三角形的性质定理判断即可.【题目详解】解:∵点G是△ABC的重心,∴AE,CD是△ABC的中线,∴DE∥BC,DE=BC,∴△DGE∽△BGC,∴=,①正确;,②正确;△EDG∽△CBG,③正确;,④正确,故选D.【题目点拨】本题考查三角形的重心的概念和性质,相似三角形的判定和性质,三角形中位线定理,掌握三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍是解题关键.9、C【解题分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1.【题目详解】A.该方程不是整式方程,故本选项不符合题意.B.当a=1时,该方程不是关于x的一元二次方程,故本选项不符合题意.C.该方程符合一元二次方程的定义,故本选项不符合题意.D.该方程中含有两个未知数,属于二元一次方程,故本选项不符合题意.故选:C.【题目点拨】本题考查了一元二次方程的性质和判定,掌握一元二次方程必须满足的条件是解题的关键.10、D【分析】把x=﹣1代入方程2x2﹣mx﹣3=0得到2+m﹣3=0,然后解关于m的方程即可.【题目详解】把x=﹣1代入方程2x2﹣mx﹣3=0得2+m﹣3=0,解得m=1.故选D.【题目点拨】本题考查了一元二次方程的解,熟知能使一元二次方程左右两边相等的未知数的值是一元二次方程的解是解决问题的关键.二、填空题(每小题3分,共24分)11、4个小支干.【分析】设每个支干长出x个小支干,根据主干、支干和小分支的总数是21,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【题目详解】解:设每个支干长出x个小支干,根据题意得:,解得:舍去,.故答案为4个小支干.【题目点拨】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.12、1【分析】根据三角形两边之和大于第三边,两边之差小于第三边,结合一元二次方程相关知识进行解题即可.【题目详解】解:∵x2﹣17x+60=0,∴(x﹣1)(x﹣12)=0,解得:x1=1,x2=12,∵三角形的两边长分别是4和6,当x=12时,6+4<12,不能组成三角形.∴这个三角形的第三边长是1.故答案为:1.【题目点拨】本题考查了三角形的三边关系和一元二次方程的求解,熟悉三角形三边关系是解题关键.13、【分析】先利用平行条件证明三角形的相似,再利用相似三角形面积比等于相似比的平方,即可解题.【题目详解】解:∵DE∥BC,,∴,由平行条件易证△ADE△ABC,∴S△ADE:S△ABC=1:9,∴=.【题目点拨】本题考查了相似三角形的判定和性质,中等难度,熟记相似三角形的面积比等于相似比的平方是解题关键.14、【分析】在直角三角形中,角的正切值等于其对边与邻边的比值,据此求解即可.【题目详解】在Rt△ABC中,∵∠A=α,AC=20,∴=,即BC=.故答案为:.【题目点拨】本题主要考查了三角函数解直角三角形,熟练掌握相关概念是解题关键.15、【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【题目详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,共5个,从中随机摸出一个,则摸到红球的概率是故答案为:.【题目点拨】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16、1.【分析】根据解特殊角的三角函数值即可解答.【题目详解】原式=1×+1=1.【题目点拨】本题考查特殊角的三角函数值,解题的关键是牢记这些特殊三角函数值.17、75º【分析】如图(见解析),连接AC,易证是等边三角形,从而可得,又由可得,再根据折叠的性质得,最后在中利用三角形的内角和定理即可得.【题目详解】如图,连接AC在菱形ABCD中,是等边三角形F为BC中点(等腰三角形三线合一的性质),即(两直线平行,同旁内角互补)又由折叠的性质得:在中,由三角形的内角和定理得:故答案为:.【题目点拨】本题是一道较好的综合题,考查了菱形的性质、等边三角形的性质、平行线的性质、图形折叠的性质、三角形的内角和定理,利用三线合一的性质证出是解题关键.18、【分析】根据圆的面积-正方形的面积=可耕地的面积即可解答.【题目详解】解:∵正方形的边长是x步,圆的半径为()步∴列方程得:.故答案为.【题目点拨】本题考查圆的面积计算公式,解题关键是找出等量关系.三、解答题(共66分)19、(1)图见解析,(2,1);(2)图见解析,【分析】(1)依次作出点A、B、C三点关于x轴的对称点A1、B1、C1,再顺次连接即可;根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数写出即可;(2)根据位似图形的性质作图即可;先求出经过一次变换(关于x轴对称)的点的坐标,再根据关于(1,1)为位似中心的点的坐标规律:横坐标=-2×(原横坐标-1)+1,纵坐标=-2×(原纵坐标-1)+1,代入化简即可.【题目详解】解:(1)如图所示,点的坐标为(2,1);(2)如图所示,点的坐标为,则其关于x轴对称的点的坐标是(m,-n),关于点位似后的坐标为(,),即两次变换后对应点的坐标为:.故答案为:.【题目点拨】本题考查了对称变换和位似变换的作图以及对应点的坐标规律探寻,属于常考题型,熟练掌握两种变换作图是解题的关键.20、(1)当球运行的水平距离为时,达到最大高度为;(2)球出手时,他跳离地面3.2.【分析】(1)根据待定系数法,即可求解;(2)令时,则,进而即可求出答案.【题目详解】(1)依题意得:抛物线经过点和,∴,解得:,∴,∴当球运行的水平距离为时,达到最大高度为;(2)∵时,,∴,即球出手时,他跳离地面3.2.【题目点拨】本题主要考查二次函数的实际应用,掌握二次函数的图象和性质,是解题的关键.21、(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①6π;②B.【分析】(1)根据平面内图形的旋转,给圆锥下定义;(2)①根据圆锥侧面积公式求容器盖铁皮的面积;②首先求得扇形的圆心角的度数,然后求得弓形的高就是矩形的宽,长就是圆的直径.【题目详解】解:(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①由题意,容器盖铁皮的面积即圆锥的侧面积∴即容器盖铁皮的面积为6πcm²;②解:设圆锥展开扇形的圆心角为n度,则2π×2=解得:n=240°,如图:∠AOB=120°,则∠AOC=60°,∵OB=3,∴OC=1.5,∴矩形的长为6cm,宽为4.5cm,故选:B.【题目点拨】本题考查了圆锥的定义及其有关计算,根据题意作出图形是解答本题的关键.22、(1)证明见解析;(2);(3).【分析】(1)由得,由∠AGH=∠ECH=90°可得∠DAC=∠BEF,由轴对称的性质得到∠DAC=∠EAC,从而可得∠BEF=∠EAC,利用三角形外角的性质得到,即可得到结论成立;(2)过点E作EM⊥BE,交BA延长线于点M,作AN⊥ME于N,先证明,得到BF=AM,再利用等腰直角三角形的性质和矩形的性质得到,DE=2CE=2AN,即可得到答案;(3)先利用相似三角形的判定证明,得到,从而得到,再证明,即可得到.【题目详解】(1)证明:∵,,∵垂足为点,,∵,,∵,,∵,,在和中,,,,,,∵,,,;(2)如图,过点E作EM⊥BE,交BA延长线于点M,作AN⊥ME于N,∵∠ACB=90°,AC=BC,∴∠B=45°,∵EM⊥BE,∴∠M=∠B=45°,由(1)已证:,,即,在和中,,∴,∴BF=AM,∵AN⊥ME,∠M=45°,∴是等腰直角三角形,∴AN=MN,AM=,易知四边形ACEN是矩形,∴CE=AN=MN,∵DE=2CE=2AN,∴,故答案为:;(3)∵,,,∵,由(1)知,,由(1)知,,,设,,则,,,,,,∵,,,.【题目点拨】本题考查了相似三角形的判定和性质,等腰直角三角形的性质,三角形的外角性质,全等三角形的判定和性质,以及等角对等边等性质,解题的关键是熟练掌握相似三角形的判定和性质进行解题,注意角度之间的相互转换.23、(1)详见解析;(2)CE=.【分析】(1)连接OD,由CD=CB,OA=OD,可以推出∠B=∠CDB,∠A=∠ODA,再根据∠ACB=90°,推出∠A+∠B=90°,证明∠ODC=90°,即可证明CD是⊙O的切线;(2)连接DE,证明△CDE∽△CAD,得到,结合已知条件,设BC=x=CD,则AC=3x,CE=3x-2,列出方程,求出x,即可求出CE的长度.【题目详解】解:(1)连接OD.∵CD=CB,OA=OD,∴∠B=∠CDB,∠A=∠ODA.又∵∠ACB=90°,∴∠A+∠B=90°,∴∠ODA+∠CDB=90°,∴∠ODC=180°-(∠ODA+∠CDB)=90°,即CD⊥OD,∴CD是⊙O的切线.(2)连接DE.∵AE是⊙O的直径,∴∠ADE=∠ADO+∠ODE=90°,又∵∠ODC=∠CDE+∠ODE=90°,∴∠ADO=∠CDE.又∵∠DCE=∠DCA,∴△CDE∽△CAD,∴∵,AE=2,∴可设BC=x=CD,则AC=3x,CE=3x-2,即解得,∴CE=3x-2=【题目点拨】本题主要考查了圆的切线证明以及圆与相似综合问题,能够合理的作出辅助线以及找出相似三角形,列出比例式是解决本题的关键.24、k=1【分析】根据题意A的纵坐标为1,把y=1代入y=1x,求得A的坐标,然后根据待定系数法即可求得k的值.【题目详解】解:∵AC⊥x轴,AC=1,∴A的纵坐标为1,∵正比例函数y=1x的图象经过点A,∴1x=1,解得x=1,∴A(1,1),∵反比例函数y=的图象经过点A,∴k=1×1=1.【题目点拨】本题考查的知识点是正比例函数以及反比例函数图象上点的坐标,直接待如即可求出答案,比较基础.25、(1)方程有两个不相等的实数根;(2)3或1.【分析】(1)利用一元二次方程根的判别式判断即可;(2)用k表示出方程的两个根,分AB=BC和AC=BC两种情况,分别求出k值即可.【题目详解】(1)∵方程x2﹣(2k+3)x+k2+3k+2=0,∴△=b2﹣1ac=(2k+3)2﹣1(k2+3k+2)=1k2+12k+9﹣1k2﹣12k﹣8=1>0,∴方程有两个不相等的实数根;(2)x2﹣(2k+3)x+k2+3k+2=0,x1=k+1,x2=k+2,当AB=k+1,AC=k+2,BC=5,由(1)知AB≠AC,故有两种情况:(i)当AC=BC=5时,k+2=5,即k=3;(ii)当AB=BC=5时,k+1=5,即k=1.故当k为3或1时,△ABC是等腰三角形.【题目点拨】本题考查了一元二次方程的根的判别式与根的关系,△>0时,方程有两个不相等的实数根;△=0时,方程有两个相等的实数根;△<0时,方程没有实数根.熟练掌握一元二次方程的根的判别式与根的关系是解题关键.26、(1)抛物线表达式为y=x2+4x+3;(2)P(-2,-3);(3)Q(-4,3).【分析】(1)根据抛物线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 童话里的冒险之旅童话故事15篇范文
- 出生日期及在职表现证明书(5篇)
- 秋日漫步公园的心情日记(15篇)
- 教育与培训行业深度调研:在线教育平台商业模式创新与盈利模式分析
- 聚焦2025年:汽车共享平台运营策略与用户出行行为洞察报告
- 2025年广播影视行业融合发展的版权保护与监管策略报告
- 2025年教育科技企业竞争策略与用户需求洞察分析001
- 标本保存及处理记录表
- 2025-2030中国防静电工作台行业发展动态与投资前景预测报告
- 2025-2030中国锆酸镁行业现状态势与供需趋势预测报告
- 顾问销售培训课件
- 声乐课说课课件
- 学生托管班管理制度
- 2024年山东夏季高中学业水平合格考生物试卷真题(含答案)
- 2025年高考军队院校征集和招录人员政治考核表(原表)
- TCCEAS001-2022建设项目工程总承包计价规范
- 2024年河北省物理组招生计划
- 中华民族共同体概论课件专家版3第三讲 文明初现与中华民族起源(史前时期)
- 虹鳟鱼养殖项目可行性研究报告写作范文
- 工业清洗剂PPT课件
- 质量管理七大手法(英文版)
评论
0/150
提交评论