黑龙江省牡丹江管理局北斗星协会2024届数学九年级第一学期期末考试模拟试题含解析_第1页
黑龙江省牡丹江管理局北斗星协会2024届数学九年级第一学期期末考试模拟试题含解析_第2页
黑龙江省牡丹江管理局北斗星协会2024届数学九年级第一学期期末考试模拟试题含解析_第3页
黑龙江省牡丹江管理局北斗星协会2024届数学九年级第一学期期末考试模拟试题含解析_第4页
黑龙江省牡丹江管理局北斗星协会2024届数学九年级第一学期期末考试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省牡丹江管理局北斗星协会2024届数学九年级第一学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列关于反比例函数,结论正确的是()A.图象必经过B.图象在二,四象限内C.在每个象限内,随的增大而减小D.当时,则2.已知反比例函数的图象在二、四象限,则的取值范围是()A. B. C. D.3.如图⊙O的直径垂直于弦,垂足是,,,的长为()A. B.4 C. D.84.如图,函数与函数在同一坐标系中的图象如图所示,则当时().A.1x1 B.1x0或x1 C.1x1且x0 D.0x1或x15.方程2x(x﹣3)=5(x﹣3)的根是()A.x= B.x=3 C.x1=,x2=3 D.x1=﹣,x2=﹣36.某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中不正确的是()A.团队平均日工资不变 B.团队日工资的方差不变C.团队日工资的中位数不变 D.团队日工资的极差不变7.若两个相似三角形的面积之比为1:4,则它们的周长之比为()A.1:2 B.2:1 C.1:4 D.4:18.抛物线y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.ab<0 B.a+b+2c﹣2>0 C.b2﹣4ac<0 D.2a﹣b>09.下列图形中,既是轴对称图形又是中心对称图形的是()A.平行四边形 B.菱形 C.等边三角形 D.等腰直角三角形10.下图是甲、乙两人2019年上半年每月电费支出的统计,则他们2019年上半年月电费支出的方差和的大小关系是()A.> B.= C.< D.无法确定二、填空题(每小题3分,共24分)11.如图,四边形ABCD是⊙O的外切四边形,且AB=5,CD=6,则四边形ABCD的周长为_______.12.在平面直角坐标系中,点(﹣2,3)关于原点对称的点的坐标是_____.13.若抛物线与轴的交点为与,则抛物线的对称轴为直线___________.14.如图,是⊙O的直径,弦,垂足为E,如果,那么线段OE的长为__________.15.如果两个相似三角形的相似比为1:4,那么它们的面积比为_____.16.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=70°,则∠EAC的度数为____________.17.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________.18.已知抛物线的对称轴是直线,其部分图象如图所示,下列说法中:①;②;③;④当时,,正确的是_____(填写序号).三、解答题(共66分)19.(10分)如图,∠AED=∠C,DE=4,BC=12,CD=15,AD=3,求AE、BE的长.20.(6分)如图,等边△ABC中,点D在AC上(CD<AC),连接BD.操作:以A为圆心,AD长为半径画弧,交BD于点E,连接AE.(1)请补全图形,探究∠BAE、∠CBD之间的数量关系,并证明你的结论;(2)把BD绕点D顺时针旋转60°,交AE于点F,若EF=mAF,求的值(用含m的式子表示).21.(6分)如图1,若要建一个长方形鸡场,鸡场的一边靠墙(墙长18米),墙对面有一个2米宽的门,另三边用竹篱笆围成,篱笆总长33米.求:(1)若鸡场面积150平方米,鸡场的长和宽各为多少米?(2)鸡场面积可能达到200平方米吗?(3)如图2,若在鸡场内要用竹篱笆加建一道隔栏,则鸡场最大面积可达多少平方米?22.(8分)在平面直角坐标系xOy中,△ABC的位置如图所示.

(1)分别写出△ABC各个顶点的坐标;

(2)分别写出顶点A关于x轴对称的点A′的坐标、顶点B关于y轴对称的点B′的坐标及顶点C关于原点对称的点C′的坐标;

(3)求线段BC的长.23.(8分)如图,某中学一幢教学楼的顶部竖有一块写有“校训”的宣传牌,米,王老师用测倾器在点测得点的仰角为,再向教学楼前进9米到达点,测得点的仰角为,若测倾器的高度米,不考虑其它因素,求教学楼的高度.(结果保留根号)24.(8分)如图示,在平面直角坐标系中,二次函数()交轴于,,在轴上有一点,连接.(1)求二次函数的表达式;(2)点是第二象限内的点抛物线上一动点①求面积最大值并写出此时点的坐标;②若,求此时点坐标;(3)连接,点是线段上的动点.连接,把线段绕着点顺时针旋转至,点是点的对应点.当动点从点运动到点,则动点所经过的路径长等于______(直接写出答案)25.(10分)某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500千克,销售单价每涨价1元,月销售量就减少10千克.(1)①求出月销售量y(千克)与销售单价x(元/千克)之间的函数关系式;②求出月销售利润w(元)与销售单价x(元/千克)之间的函数关系式;(2)在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为多少元?(3)当销售单价定为多少元时,能获得最大利润?最大利润是多少元?26.(10分)若抛物线(a、b、c是常数,)与直线都经过轴上的一点P,且抛物线L的顶点Q在直线上,则称此直线与该抛物线L具有“一带一路”关系,此时,直线叫做抛物线L的“带线”,抛物线L叫做直线的“路线”.(1)若直线与抛物线具有“一带一路”关系,求m、n的值.(2)若某“路线”L的顶点在反比例函数的图象上,它的“带线”的解析式为,求此路的解析式.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据反比例函数的图象和性质,逐一判断选项,即可得到答案.【题目详解】∵,∴A错误,∵k=-8<0,即:函数的图象在二,四象限内,∴B正确,∵k=-8<0,即:在每个象限内,随的增大而增大,∴C错误,∵当时,则或,∴D错误,故选B.【题目点拨】本题主要考查反比例函数的图象和性质,掌握比例系数k的意义与增减性,是解题的关键.2、D【分析】由题意根据反比例函数的性质即可确定的符号,进行计算从而求解.【题目详解】解:因为反比例函数的图象在二、四象限,所以,解得.故选:D.【题目点拨】本题考查反比例函数的性质,注意掌握反比例函数,当k>0时,反比例函数图象在一、三象限;当k<0时,反比例函数图象在第二、四象限内.3、C【题目详解】∵直径AB垂直于弦CD,∴CE=DE=CD,∵∠A=22.5°,∴∠BOC=45°,∴OE=CE,设OE=CE=x,∵OC=4,∴x2+x2=16,解得:x=2,即:CE=2,∴CD=4,故选C.4、B【分析】根据题目中的函数解析式和图象可以得到当时的x的取值范围,从而可以解答本题.【题目详解】根据图象可知,当函数图象在函数图象上方即为,∴当时,1x0或x1.故选B.【题目点拨】此题考查反比例函数与一次函数的交点问题,解题关键在于利用函数图象解决问题.5、C【解题分析】利用因式分解法解一元二次方程即可.解:方程变形为:2x(x﹣3)﹣5(x﹣3)=0,∴(x﹣3)(2x﹣5)=0,∴x﹣3=0或2x﹣5=0,∴x1=3,x2=.故选C.6、B【解题分析】根据平均数、方差、中位数和众数的定义分别对每一项进行分析,即可得出答案.【题目详解】解:调整前的平均数是:=280;调整后的平均数是:=280;故A正确;调整前的方差是:=;调整后的方差是:=;故B错误;调整前:把这些数从小到大排列为:260,260,260,260,280,280,280,280,300,300,300,300;最中间两个数的平均数是:280,则中位数是280,调整后:把这些数从小到大排列为:260,260,260,260,260,280,280,300,300,300,300,300;最中间两个数的平均数是:280,则中位数是280,故C正确;调整前的极差是40,调整后的极差也是40,则极差不变,故D正确.故选B.【题目点拨】此题考查了平均数、方差、中位数和极差的概念,掌握各个数据的计算方法是关键.7、A【解题分析】∵两个相似三角形的面积之比为1:4,

∴它们的相似比为1:1,(相似三角形的面积比等于相似比的平方)

∴它们的周长之比为1:1.

故选A.【题目点拨】相似三角形的面积比等于相似比的平方,相似三角形的周长的比等于相似比.8、D【解题分析】利用抛物线开口方向得到a>0,利用抛物线的对称轴在y轴的左侧得到b>0,则可对A选项进行判断;利用x=1时,y=2得到a+b=2﹣c,则a+b+2c﹣2=c<0,于是可对B选项进行判断;利用抛物线与x轴有2个交点可对C选项进行判断;利用﹣1<﹣<0可对D选项进行判断.【题目详解】∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的左侧,∴a、b同号,即b>0,∴ab>0,故A选项错误;∵抛物线与y轴的交点在x轴下方,∴c<0,∵x=1时,y=2,∴a+b+c=2,∴a+b+2c﹣2=2+c﹣2=c<0,故B选项错误;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,故C选项错误;∵﹣1<﹣<0,而a>0,∴﹣2a<﹣b,即2a﹣b>0,所以D选项正确.故选:D.【题目点拨】本题主要考查二次函数解析式的系数的几何意义,掌握二次函数解析式的系数与图象的开口方向,对称轴,图象与坐标轴的交点的位置关系,是解题的关键.9、B【解题分析】试题解析:A.不是轴对称图形,是中心对称图形,故此选项错误,不合题意;B.是轴对称图形,也是中心对称图形,故此选项正确,符合题意;C.是轴对称图形,不是中心对称图形,故此选项错误,不合题意;D.无法确定是轴对称图形,也不是中心对称图形,故此选项错误,不合题意.故选B.10、A【解题分析】方差的大小反映数据的波动大小,方差越小,数据越稳定,根据题意可判断乙的数据比甲稳定,所以乙的方差小于甲.【题目详解】解:由题意可知,乙的数据比甲稳定,所以>故选:A【题目点拨】本题考查方差的定义与意义,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.二、填空题(每小题3分,共24分)11、1【分析】根据圆外切四边形的对边之和相等求出AD+BC,根据四边形的周长公式计算即可.【题目详解】解:∵四边形ABCD是⊙O的外切四边形,∴AE=AH,DH=DG,CG=CF,BE=BF,∵AB=AE+EB=5,CD=DG+CG=6,AH+DH+BF+CF=AE+DG+BE+CG,

即AD+BC=AB+CD=11,

∴四边形ABCD的周长=AD+BC+AB+CD=1,

故答案为:1.【题目点拨】本题考查的是切线长定理,掌握圆外切四边形的对边之和相等是解题的关键.12、(2,﹣3).【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【题目详解】点(﹣2,3)关于原点对称的点的坐标为(2,﹣3).故答案为:(2,﹣3).【题目点拨】本题考查了关于原点对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.13、3【分析】函数的图象与轴的交点的横坐标就是方程的根,再根据两根之和公式与对称轴公式即可求解.【题目详解】根据两根之和公式可得,即则抛物线的对称轴:故填:3.【题目点拨】本题考查二次函数与一元二次方程的关系和两根之和公式与对称轴公式,熟练掌握公式是关键.14、6【分析】连接OD,根据垂径定理,得出半径OD的长和DE的长,然后根据勾股定理求出OE的长即可.【题目详解】∵是⊙O的直径,弦,垂足为E,∴OD=AB=10,DE=CD=8,在Rt中,由勾股定理可得:,故本题答案为:6.【题目点拨】本题考查了垂径定理和勾股定理的应用,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.15、1:1【解题分析】根据相似三角形的性质:相似三角形的面积比等于相似比的平方即可解得.【题目详解】∵两个相似三角形的相似比为1:4,∴它们的面积比为1:1.故答案是:1:1.【题目点拨】考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.16、【分析】根据菱形的性质求∠ACD的度数,根据圆内接四边形的性质求∠AEC的度数,由三角形的内角和求解.【题目详解】解:∵四边形ABCD是菱形,∴AD∥BC,AD=DC,∴∠DAC=∠ACB,∠DAC=∠DCA∵∠D=70°,∴∠DAC=,∴∠ACB=55°,∵四边形ABCD是⊙O的内接四边形,∴∠AEC+∠D=180°,∴∠AEC=180°-70°=110°,∴∠EAC=180°-∠AEC-∠ACB=180°-55°-110°=15°,∴∠EAC=15°.故答案为:15°【题目点拨】本题考查了菱形的性质,三角形的内角和,圆内接四边形的性质,熟练掌握菱形的性质和圆的性质是解答此题的关键.17、0.1【分析】先列举出所有上升数,再根据概率公式解答即可.【题目详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+1+3+2+1=36个.概率为36÷90=0.1.故答案为:0.1.18、①③④.【解题分析】首先根据二次函数图象开口方向可得,根据图象与y轴交点可得,再根据二次函数的对称轴,结合a的取值可判定出b>0,根据a,b,c的正负即可判断出①的正误;把代入函数关系式,再根据对称性判断出②的正误;把中即可判断出③的正误;利用图象可以直接看出④的正误.【题目详解】解:根据图象可得:,对称轴:,故①正确;把代入函数关系式由抛物线的对称轴是直线,可得当故②错误;即:故③正确;由图形可以直接看出④正确.故答案为①③④.【题目点拨】此题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当时,抛物线向上开口;当时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即),对称轴在y轴左侧;当a与b异号时(即),对称轴在y轴右侧.(简称:左同右异);③常数项c决定抛物线与y轴交点,抛物线与y轴交于.三、解答题(共66分)19、AE=6,BE=3.【解题分析】先根据已知条件求证△ABC∽△ADE,然后根据相似三角形对应边成比例,代入数值即可求解.【题目详解】∵∠AED=∠C,∠A为公共角∴△ABC∽△ADE∴又∵DE=4,BC=12,CD=15,AD=3,∴AC=15+3=18∴∴AE=6,AB=9∴BE=9-6=3【题目点拨】本题考查了相似三角形的性质和判定,利用相似三角形对应边成比例即可解题.20、(1)图形见解析,∠BAE=2∠CBD,理由见解析;(2),理由见解析【分析】(1)根据圆周角和圆心角的关系得:2∠BDH=∠BAE,由等腰三角形的性质得HD∥BC,由平行线的性质可得结论;

(2)如图2,作辅助线,由旋转得:△BDM是等边三角形,证明△AMB≌△CDB(SAS),得AM=CD,∠MAB=∠C=60°,证明△ABD∽△DFE,设AF=a,列比例式可得结论【题目详解】(1)如图1,∠BAE=2∠CBD.设弧DE与AB交于H,连接DH,∴2∠BDH=∠BAE,又∵AD=AH,AB=AC,∠BAC=60°,∴∠AHD=∠ADH=60°,∠ABC=∠C=60°,∴∠AHD=∠ABC,∴HD∥BC,∴∠DBC=∠HDB,∴∠BAE=2∠DBC;(2)如图2,连接AM,BM,由旋转得:BD=DM,∠BDM=60°,∴△BDM是等边三角形,∴BM=BD,∠MBD=60°,∵∠ABM+∠ABD=∠ABD+∠CBD,∴∠ABM=∠CBD,∵△ABC是等边三角形,∴AB=AC,∴△AMB≌△CDB(SAS),∴AM=CD,∠MAB=∠C=60°,∵∠AGM=∠BGD,∠MAB=∠BDM=60°,∴∠AMD=∠ABD,由(1)知:AD=AE,∴∠AED=∠ADE,∵∠EDF=∠BAD,∴△ABD∽△DFE,∴∠EFD=∠ABD=∠AFM=∠AMD,∴AF=AM=CD,设AF=a,则EF=ma,AE=a+ma=(m+1)a,∴AB=AD+CD=AE+CD=(m+2)a,由△ABD∽△DFE,∴==.【题目点拨】本题考查全等三角形的性质和判定、相似三角形的判定和性质、等边三角形、三角形内角和和外角的性质等知识,解题的关键灵活应用所学知识解决问题,学会利用辅助线,构建全等三角形解决问题,属于中考常考题型.21、(1)长为15米,宽为10米;(2)不可能达到200平方米;(3)【分析】(1)若鸡场面积150平方米,求鸡场的长和宽,关键是用一个未知数表示出长或宽,并注意去掉门的宽度;(2)求二次函数的最值问题,列出面积的关系式化为顶点式,确定函数最大值与200的大小关系,即可得到答案;(3)此题中首先设出鸡场的面积和宽,列函数式时要注意墙宽有三条道,所以鸡场的长要用篱笆的周长减去3个宽再加上大门的宽2米,再求函数式的最大值.【题目详解】(1)设宽为x米,则:x(33﹣2x+2)=150,解得:x1=10,x2=(不合题意舍去),∴长为15米,宽为10米;(2)设面积为w平方米,则:W=x(33﹣2x+2),变形为:,∴鸡场面积最大值为=153<200,即不可能达到200平方米;(3)设此时面积为Q平方米,宽为x米,则:Q=x(33﹣3x+2),变形得:Q=﹣3(x-)2+,∴此时鸡场面积最大值为.【题目点拨】此题考查一元二次方程的实际应用,二次函数最大值的确定方法,正确理解题意列得方程及二次函数关系式是解题的关键.22、(1)A(-4,3),C(-2,5),B(3,0);(2)点A′的坐标为:(-4,-3),B′的坐标为:(-3,0),点C′的坐标为:(2,-5);(3)5..【分析】(1)直接利用坐标系得出各点坐标即可;

(2)利用关于坐标轴对称点的性质分别得出答案;

(3)直接利用勾股定理得出答案.【题目详解】(1)A(-4,3),C(-2,5),B(3,0);(2)如图所示:点A′的坐标为:(-4,-3),B′的坐标为:(-3,0),点C′的坐标为:(2,-5);

(3)线段BC的长为:=5.【题目点拨】此题主要考查关于坐标轴对称点的性质,勾股定理,正确得出对应点位置是解题关键.23、教学楼DF的高度为.【分析】延长AB交CF于E,先证明四边形AMFE是矩形,求出EF=AM=3,再设DE=x米,利用Rt△BCE得到AE=x+12,再根据Rt△ADE得到,即可得到x的值,由此根据DF=DE+EF求出结果.【题目详解】如图,延长AB交CF于E,由题意知:∠DAE=30,∠CBE=45,AB=9米,四边形ABNM是矩形,∵四边形ABNM是矩形,∴AB∥MN,∵CF⊥MN,∴∠AEC=∠MFC=90,∵∠AMF=∠MFC=∠AEF=90,∴四边形AMFE是矩形,∴EF=AM=3,设DE=x米,在Rt△BCE中,∠CBE=45,∴BE=CE=x+3,∵AB=9,∴AE=x+12,在Rt△ADE中,∠DAE=30,∴,∴,解得:,∴DF=DE+EF=(米).【题目点拨】此题考查利用三角函数解决实际问题,解题中注意线段之间的关系,设未知数很主要,通常是设所求的量,利用图中所给的直角三角形,表示出两条边的长度,根据度数即可列得三角函数关系式,由此解决问题.24、(1);(2)①,点坐标为;②;(3)【分析】(1)根据点坐标代入解析式即可得解;(2)①由A、E两点坐标得出直线AE解析式,设点坐标为,过点作轴交于点,则坐标为,然后构建面积与t的二次函数,即可得出面积最大值和点D的坐标;②过点作,在中,由,,得出点M的坐标,进而得出直线ME的解析式,联立直线ME和二次函数,即可得出此时点D的坐标;(3)根据题意,当点P在点C时,Q点坐标为(-6,6),当点P移动到点A时,Q′点坐标为(-4,-4),动点所经过的路径是直线QQ′,求出两点之间的距离即可得解.【题目详解】(1)依题意得:,解得∴(2)①∵,∴设直线AE为将A、E代入,得∴∴直线设点坐标为,其中过点作轴交于点,则坐标为∴∴即:由函数知识可知,当时,,点坐标为②设与相交于点过点作,垂足为在中,,,设,则,∴∴∴∴∴∴∴∴(舍去),当时,∴(3)当点P在点C时,Q点坐标为(-6,6),当点P移动到点A时,Q′点坐标为(-4,-4),如图所示:∴动点所经过的路径是直线QQ′,∴故答案为.【题目点拨】此题主要考查二次函数以及动点综合问题,解题关键是找出合适的坐标,即可解题.25、(1)①y=﹣10x+1000;②w=﹣10x2+1400x﹣40000;(2)不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为80元;(3)售价定为70元时会获得最大利润,最大利润是9000元【分析】(1)根据题意可以得到月销售利润w(单位:元)与售价x(单位:元/千克)之间的函数解析式;(2)根据题意可以得到方程和相应的不等式,从而可以解答本题;(3)根据(1)中的关系式化为顶点式即可解答本题.【题目详解】解:(1)①由题意可得:y=500﹣(x﹣50)×10=﹣10x+1000;②w=(x﹣40)[﹣10x+1000

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论