版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省乐陵市2024届数学九上期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在Rt△ABC中,∠C=Rt∠,则cosA可表示为(
)A. B. C. D.2.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()A. B. C. D.3.把抛物线向右平移个单位,再向上平移个单位,得到的抛物线是()A. B. C. D.4.为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的6名同学记录了自己家中一周内丢弃塑料袋的数量,结果如下:(单位:个)33,25,28,26,25,31,如果该班有45名学生,那么根据提供的数据估计本周全班同学各家总共丢弃塑料袋的数量为()A.900个 B.1080个 C.1260个 D.1800个5.如图,点E、F是边长为4的正方形ABCD边AD、AB上的动点,且AF=DE,BE交CF于点P,在点E、F运动的过程中,PA的最小值为()A.2 B.2 C.4﹣2 D.2﹣26.菱形的两条对角线长分别为60cm和80cm,那么边长是()A.60cm B.50cm C.40cm D.80cm7.若将一个正方形的各边长扩大为原来的4倍,则这个正方形的面积扩大为原来的()A.16倍 B.8倍 C.4倍 D.2倍8.已知反比例函数的图象经过点,小良说了四句话,其中正确的是()A.当时, B.函数的图象只在第一象限C.随的增大而增大 D.点不在此函数的图象上9.已知圆内接四边形ABCD中,∠A:∠B:∠C=1:2:3,则∠D的大小是()A.45° B.60° C.90° D.135°10.抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5) B.(﹣2,﹣5) C.(2,5) D.(2,﹣5)二、填空题(每小题3分,共24分)11.已知为锐角,且,那么等于_____________.12.如图,一块含30°的直角三角板ABC(∠BAC=30°)的斜边AB与量角器的直径重合,与点D对应的刻度读数是54°,则∠BCD的度数为_____度.13.一只不透明的袋子中装有红球和白球共个,这些球除了颜色外都相同,校课外学习小组做摸球试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,算得摸到红球的频率是,则袋中有__________.14.方程(x﹣1)2=4的解为_____.15.在一个不透明的袋子中装有6个白球和若干个红球,这些球除颜色外无其他差别.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有_____个.16.若反比例函数为常数)的图象在第二、四象限,则的取值范围是_____.17.已知实数,是方程的两根,则的值为________.18.如图,一个长为4,宽为3的长方形木板斜靠在水平桌面上的一个小方块上,其长边与水平桌面成30°夹角,将长方形木板按逆时针方向做两次无滑动的翻滚,使其长边恰好落在水平桌面l上,则木板上点A滚动所经过的路径长为_____.三、解答题(共66分)19.(10分)如图已知一次函数y1=2x+5与反比例函数y2=(x<0)相交于点A,B.(1)求点A,B的坐标;(2)根据图象,直接写出当y₁≤y₂时x的取值范围.20.(6分)如图,中,,以为直径作,交于点,交于点.(1)求证:.(2)若,求的度数.21.(6分)某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,;时,.(1)求一次函数的表达式;(2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价的范围.22.(8分)某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为多少?23.(8分)解方程(1)7x2-49x=0;(2)x2-2x-1=0.24.(8分)如图,是的直径,是弦,是弧的中点,过点作的切线交的延长线于点,过点作于点,交于点.(1)求证:;(2)若,,求的长.25.(10分)如图,在矩形ABCD中,CE⊥BD,AB=4,BC=3,P为BD上一个动点,以P为圆心,PB长半径作⊙P,⊙P交CE、BD、BC交于F、G、H(任意两点不重合),(1)半径BP的长度范围为;(2)连接BF并延长交CD于K,若tanKFC3,求BP;(3)连接GH,将劣弧HG沿着HG翻折交BD于点M,试探究是否为定值,若是求出该值,若不是,请说明理由.26.(10分)某电商在购物平台上销售一款小电器,其进价为元件,每销售一件需缴纳平台推广费元,该款小电器每天的销售量(件)与每件的销售价格(元)满足函数关系:.为保证市场稳定,供货商规定销售价格不得低于元件且不得高于元件.(1)写出每天的销售利润(元)与销售价格(元)的函数关系式;(2)每件小电器的销售价格定为多少元时,才能使每天获得的利润最大,最大是多少元?
参考答案一、选择题(每小题3分,共30分)1、C【解题分析】解:cosA=,故选C.2、D【解题分析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵共6个数,大于3的有3个,∴P(大于3)=.故选D.点睛:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3、A【分析】根据抛物线平移的规律:左加右减,上加下减,即可得解.【题目详解】由已知,得经过平移的抛物线是故答案为A.【题目点拨】此题主要考查抛物线平移的性质,熟练掌握,即可解题.4、C【分析】先求出6名同学家丢弃塑料袋的平均数量作为全班学生家的平均数量,然后乘以总人数45即可解答.【题目详解】估计本周全班同学各家总共丢弃塑料袋的数量为(个).【题目点拨】本题考查了用样本估计总体的问题,掌握算术平均数的公式是解题的关键.5、D【分析】根据直角三角形斜边上的中线等于斜边的一半,取BC的中点O,连接OP、OA,然后求出OP=CB=1,利用勾股定理列式求出OA,然后根据三角形的三边关系可知当O、P、A三点共线时,AP的长度最小.【题目详解】解:在正方形ABCD中,∴AB=BC,∠BAE=∠ABC=90°,在△ABE和△BCF中,∵,∴△ABE≌△BCF(SAS),∴∠ABE=∠BCF,∵∠ABE+∠CBP=90°∴∠BCF+∠CBP=90°∴∠BPC=90°如图,取BC的中点O,连接OP、OA,则OP=BC=1,在Rt△AOB中,OA=,根据三角形的三边关系,OP+AP≥OA,∴当O、P、A三点共线时,AP的长度最小,AP的最小值=OA﹣OP=﹣1.故选:D.【题目点拨】本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系.确定出AP最小值时点P的位置是解题关键,也是本题的难点.6、B【分析】根据菱形的对角线互相垂直平分求出OA、OB的长,再利用勾股定理列式求出边长AB,然后根据菱形的周长公式列式进行计算即可得解.【题目详解】解:如图,∵菱形的两条对角线的长是6cm和8cm,∴OA=×80=40cm,OB=×60=30cm,又∵菱形的对角线AC⊥BD,∴AB==50cm,∴这个菱形的边长是50cm.故选B.【题目点拨】本题考查了菱形的性质,勾股定理的应用,主要利用了菱形的对角线互相垂直平分的性质.7、A【分析】根据正方形的面积公式:s=a2,和积的变化规律,积扩大的倍数等于因数扩大倍数的乘积,由此解答.【题目详解】解:根据正方形面积的计算方法和积的变化规律,如果一个正方形的边长扩大为原来的4倍,那么正方形的面积是原来正方形面积的4×4=16倍.故选A.【题目点拨】此题考查相似图形问题,解答此题主要根据正方形的面积的计算方法和积的变化规律解决问题.8、D【分析】利用待定系数法求出k,即可根据反比例函数的性质进行判断.【题目详解】解:∵反比例函数的图象经过点(3,2),∴k=2×3=6,∴,∴图象在一、三象限,在每个象限y随x的增大而减小,故A,B,C错误,∴点不在此函数的图象上,选项D正确;故选:D.【题目点拨】本题考查反比例函数图象上的点的特征,教育的关键是熟练掌握基本知识,属于中考常考题型.9、C【分析】根据圆内接四边形对角互补,结合已知条件可得∠A:∠B:∠C:∠D=1:2:3:2,∠B+∠D=180°,由此即可求得∠D的度数.【题目详解】∵四边形ABCD为圆的内接四边形,∠A:∠B:∠C=1:2:3,∴∠A:∠B:∠C:∠D=1:2:3:2,而∠B+∠D=180°,∴∠D=×180°=90°.故选C.【题目点拨】本题考查了圆内接四边形的性质,熟练运用圆内接四边形对角互补的性质是解决问题的关键.10、C【分析】根据二次函数的性质y=a(x﹣h)2+k的顶点坐标是(h,k)进行求解即可.【题目详解】∵抛物线解析式为y=3(x-2)2+5,∴二次函数图象的顶点坐标是(2,5),故选C.【题目点拨】本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.二、填空题(每小题3分,共24分)11、【分析】根据特殊角的三角函数值即可求出答案.【题目详解】故答案为:.【题目点拨】本题主要考查特殊角的三角函数值,掌握特殊角的三角函数值是解题的关键.12、1.【分析】先利用圆周角定理的推论判断点C、D在同一个圆上,再根据圆周角定理得到∠ACD=27°,然后利用互余计算∠BCD的度数.【题目详解】解:∵∠C=90°,∴点C在量角器所在的圆上∵点D对应的刻度读数是54°,即∠AOD=54°,∴∠ACD=∠AOD=27°,∴∠BCD=90°﹣27°=1°.故答案为1.【题目点拨】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.13、1【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【题目详解】设袋中有x个红球.
由题意可得:,解得:,
故答案为:1.【题目点拨】本题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.14、x1=3,x2=﹣1【解题分析】试题解析:(x﹣1)2=4,即x﹣1=±2,所以x1=3,x2=﹣1.故答案为x1=3,x2=﹣1.15、1【分析】设袋子中的红球有x个,利用红球在总数中所占比例得出与试验比例应该相等求出即可.【题目详解】解:设袋子中的红球有x个,根据题意,得:=0.7,解得:x=1,经检验:x=1是分式方程的解,∴袋子中红球约有1个,故答案为:1.【题目点拨】此题主要考查概率公式的应用,解题的关键是根据题意列式求解.16、.【分析】根据反比例函数的性质,当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大,即可求解.【题目详解】解:因为反比例函数为常数)的图象在第二、四象限.所以,.故答案为:.【题目点拨】本题考查的知识点是反比例函数的性质,(1)反比例函数y=xk(k≠0)的图象是双曲线;
(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.注意:反比例函数的图象与坐标轴没有交点.17、-1【解题分析】先根据根与系数的关系得到a+b=1,ab=﹣1,再利用通分把+变形为,然后利用整体代入的方法计算.【题目详解】根据题意得:a+b=1,ab=﹣1,所以+==﹣1.故答案为:﹣1.【题目点拨】本题主要考查一元二次方程根与系数的关系,熟练掌握根与系数关系的公式是关键.18、π【分析】木板转动两次的轨迹如图(见解析):第一次转动是以点M为圆心,AM为半径,圆心角为60度;第二次转动是以点N为圆心,为半径,圆心角为90度,根据弧长公式即可求得.【题目详解】由题意,木板转动两次的轨迹如图:(1)第一次转动是以点M为圆心,AM为半径,圆心角为60度,即所以弧的长(2)第二次转动是以点N为圆心,为半径,圆心角为90度,即所以弧的长(其中半径)所以总长为故答案为.【题目点拨】本题考查了图形的翻转、弧长公式(弧长,其中是圆心角弧度数,为半径),理解图形翻转的轨迹是解题关键.三、解答题(共66分)19、(1)A点的坐标为(﹣,2),B点的坐标为(﹣1,3);(2)x≤﹣或﹣1≤x<1.【分析】(1)联立两函数解析式,解方程组即可得到交点坐标;(2)写出一次函数图象在反比例函数图象下方的x的取值范围即可.【题目详解】解:(1)联立两函数解析式得,,解得或,所以A点的坐标为(﹣,2),B点的坐标为(﹣1,3);(2)根据图象可得,当y₁≤y₂时x的取值范围是x≤﹣或﹣1≤x<1.【题目点拨】本题考查了反比例函数与一次函数图象的交点问题,根据解析式列出方程组求出交点坐标是解题的关键.20、(1)证明见解析;(2)80°【分析】(1)连接AD,根据圆周角定理和等腰三角形的三线合一,可得,利用相等的圆周角所对的弧相等即可得证;(2)连接BE,利用同弧所对的圆周角相等可得,再利用等腰三角形的性质可求得利用圆周角定理即可求解.【题目详解】解:(1)连接AD,,∵为的直径,∴,即,∵在中,,∴,∴;(2)连接BE,,∵,∴,,∵,∴,∴的度数为.【题目点拨】本题考查圆周角定理,等腰三角形的性质,弧、弦、圆心角和圆周角之间的关系,熟练应用圆的基本性质定理是解题的关键.21、解:(3)一次函数的表达式为(4)当销售单价定为4元时,商场可获得最大利润,最大利润是893元(3)销售单价的范围是.【解题分析】(3)列出二元一次方程组解出k与b的值可求出一次函数的表达式.(4)依题意求出W与x的函数表达式可推出当x=4时商场可获得最大利润.(3)由w=500推出x4﹣380x+7700=0解出x的值即可.【题目详解】(3)根据题意得:,解得k=﹣3,b=3.所求一次函数的表达式为;(4)=,∵抛物线的开口向下,∴当x<90时,W随x的增大而增大,而销售单价不低于成本单价,且获利不得高于45%,即60≤x≤60×(3+45%),∴60≤x≤4,∴当x=4时,W==893,∴当销售单价定为4元时,商场可获得最大利润,最大利润是893元.(3)令w=500,解方程,解得,,又∵60≤x≤4,所以当w≥500时,70≤x≤4.考点:3.二次函数的应用;4.应用题.22、饲养室的最大面积为75平方米【分析】设垂直于墙的材料长为x米,则平行于墙的材料长为27+3-3x=30-3x,表示出总面积S=x(30-3x)=-3x2+30x=-3(x-5)2+75即可求得面积的最值【题目详解】设垂直于墙的材料长为x米,则平行于墙的材料长为27+3﹣3x=30﹣3x,则总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75,故饲养室的最大面积为75平方米【题目点拨】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出函数模型.23、(1)x1=0,x2=7;(2),【解题分析】(1)用因式分解法求解即可;(2)用配方法求解即可.【题目详解】(1)∵7x2-49x=0,∴x2-7x=0,∴.解得x1=0,x2=7(2)移项,得,配方,得,开平方,得.解得,【题目点拨】本题考查了一元二次方程的解法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.24、(1)见解析;(2)【分析】(1)连接OC,交AE于点H.根据垂径定理得到OC⊥AE.根据切线的性质得到OC⊥GC,于是得到结论;
(2)根据三角函数的定义得到sin∠OCD=.连接BE.AB是⊙O的直径,解直角三角形即可得到结论.【题目详解】(1)证明:连接,交于点.是弧的中点,是的切线,,,;(2),,..在中,,,连接是的直径,.在中,,,在Rt△AEB中,,AB=10,.【题目点拨】本题考查了切线的性质,三角函数的定义,平行线的判定,正确的作出辅助线是解题的关键.25、(1);(2)BP=1;(3)【分析】(1)当点G和点E重合,当点G和点D重合两种临界状态,分别求出BP的值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度美发店供应链优化股份投资合同4篇
- 2025年度文化旅游项目投资与运营合同4篇
- 2025年辅助阳极项目可行性研究报告
- 2025年测绘技术服务合同3篇
- 4 古诗三首《赠刘景文》(说课稿)2024-2025学年统编版语文三年级上册
- 2025年风扇轴项目可行性研究报告
- 2023二年级数学上册 六 表内除法 2除法的初步认识第4课时 除法的初步认识(1)说课稿 西师大版
- 二零二五版方木木材回收利用合同3篇
- 2025年不锈钢切片机行业深度研究分析报告
- 2025年中国国际货代行业市场深度分析及投资战略研究报告
- 2025届北京巿通州区英语高三上期末综合测试试题含解析
- 公婆赠予儿媳妇的房产协议书(2篇)
- 煤炭行业智能化煤炭筛分与洗选方案
- 2024年机修钳工(初级)考试题库附答案
- Unit 5 同步练习人教版2024七年级英语上册
- 矽尘对神经系统的影响研究
- 分润模式合同模板
- 海南省汽车租赁合同
- 2024年长春医学高等专科学校单招职业适应性测试题库必考题
- (正式版)SHT 3046-2024 石油化工立式圆筒形钢制焊接储罐设计规范
- 2023年山东济南市初中学业水平考试地理试卷真题(答案详解)
评论
0/150
提交评论