2022年全国初中数学竞赛模拟试卷及答案解析_第1页
2022年全国初中数学竞赛模拟试卷及答案解析_第2页
2022年全国初中数学竞赛模拟试卷及答案解析_第3页
2022年全国初中数学竞赛模拟试卷及答案解析_第4页
2022年全国初中数学竞赛模拟试卷及答案解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第页2022年全国初中数学竞赛模拟试卷一、填空题(共7小题,每空2分,满分20分)1.(2分)已知m﹣n=﹣5,m2+n2=13,那么m4+n4=.2.(2分)如图,以AB为直径画一个大半圆,BC=2AC,分别以AC,CB为直径在大半圆内部画两个小半圆,那么阴影部分的面积与大半圆面积的比等于.3.(2分)加油站A和商店B在马路MN的同一侧(如图),A到MN的距离大于B到MN的距离,AB=7米,一个行人P在马路MN上行走,问:当P到A的距离与P到B的距离之差最大时,这个差等于米.4.(4分)如图,有个正方形,有个三角形.5.(2分)在平面直角坐标系中,点P[m(m+1),m﹣1](m为实数)不可能在第象限.6.(4分)某校组织师生春游,如果单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可以少租一辆,且余30个座位.则该校去参加春游的人数为;若已知45座客车的租金为每辆250元,60座客车租金为每辆300元,这次春游同时租用这两种客车,其中60座客车比45座客车多租1辆,所以租金比单独一种客车要节省,按这种方案需要租金元.7.(2分)如图,P是平行四边形ABCD内一点,且S△PAB=5,S△PAD=2,则阴影部分的面积为.二、选择题(共1小题,每小题4分,满分2分)8.(2分)如果a,b,c均为正数,且a(b+c)=152,b(c+a)=162,c(a+b)=170,那么abc的值是()A.672 B.688 C.720 D.750三、解答题(共9小题,满分100分)9.(8分)已知a,b,c都是整数,当代数式7a+2b+3c的值能被13整除时,那么代数式5a+7b﹣22c的值是否一定能被13整除,为什么?10.(8分)如图所示,在四边形ABCD中,AM=MN=ND,BE=EF=FC,四边形ABEM,MEFN,NFCD的面积分别记为S1,S2和S3,求S2(提示:连接AE、EN、NC和AC)11.(9分)已知n是正整数,且2n+1与3n+1都是完全平方数.是否存在n,使得5n+3是质数?如果存在,请求出所有n的值;如果不存在,请说明理由.12.(10分)某市电话号码原为六位数,第一次升位是在首位数和第二位数之间加上3成为一个七位数;第二次升位是在首位数前加上2成为一个八位数,某人发现他家中的电话号码升位后的八位数恰好是原六位数的电话号码33倍.问这家原来的电话号码是多少?13.(10分)如图,一个9×9的方格图,由粗线隔为9个横竖各有3个格的“小九宫”格,其中,有一些方格填有1至9的数字,小鸣在第九行的空格中各填入了一个不大于9的正整数,使每行、每列和每个“小九宫”格内的数字都不重复,然后小鸣将第九行的数字从左向右写成一个9位数.请写出这个9位数,简单说明理由.14.(10分)平面上有6个点,其中任何3个点都不在同一条直线上,以这6个点为顶点可以构造多少个不同的三角形?从这些三角形中选出一些,如果要求其中任何两个三角形没有公共顶点,最多可以选出多少个三角形?如果要求其中任何两个三角形没有公共边,最多可以选出多少个三角形?(前两问不要求说明理由)15.(15分)壮壮、菲菲、路路出生时,他们的妈妈都是27岁,某天三位妈妈王雪、刘芳和李薇闲谈时,王雪说:“菲菲比刘芳小岁”;李薇说:“路路和刘芳的年龄的和是36岁”,刘芳说:“路路和王雪的年龄的和是35岁”.已知壮壮、菲菲、路路和他们的妈妈6个人年龄的总和是105岁.请回答:是路路的妈妈?壮壮、菲菲和路路的年龄各是岁,岁,岁?16.(15分)请回答:18能否表示为3个互异的正整数的倒数的和?117.(15分)甲、乙二人在同一条椭圆形跑道上作特殊训练:他们同时从同一地点出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈,跑第一圈时,乙的速度是甲速度的23,甲跑第二圈时速度比第一圈提高了13,乙跑第二圈时速度提高了

2022年全国初中数学竞赛模拟试卷参考答案与试题解析一、填空题(共7小题,每空2分,满分20分)1.(2分)已知m﹣n=﹣5,m2+n2=13,那么m4+n4=97.解:∵m﹣n=﹣5,m2+n2=13,∴(m﹣n)2=m2+n2﹣2mn,∴mn=﹣6,又∵(m2+n2)2=m4+n4+2m2n2,故m4+n4=132﹣2×36=97.故答案为:97.2.(2分)如图,以AB为直径画一个大半圆,BC=2AC,分别以AC,CB为直径在大半圆内部画两个小半圆,那么阴影部分的面积与大半圆面积的比等于49解:设AC=2x,∵BC=2AC,∴BC=4x,AB=6x,∴S阴影部分=12π(3x)2-12π(2x=2πx2∴阴影部分的面积与大半圆面积的比为:2πx2:12π(3x)故答案为:493.(2分)加油站A和商店B在马路MN的同一侧(如图),A到MN的距离大于B到MN的距离,AB=7米,一个行人P在马路MN上行走,问:当P到A的距离与P到B的距离之差最大时,这个差等于7米.解:当A、B、P三点不在同一直线上时,此时三点构成三角形.∵两边AP与BP的差小于第三边AB.∴A、B、P在同一直线上,∴P到A的距离与P到B的距离之差最大,∴这个差就是AB的长,故答案为:7.4.(4分)如图,有95个正方形,有155个三角形.解:(1)一类是有一组对边为水平方向的正方形个数,这类正方形的个数为6×6+5×5+4×4+3×3+2×2+1×1=91.另外还有4个正方形.所以正方形的个数为91+4=95;(2)①直角边长为1的三角形的个数为6×6×2=72个.②直角边长为2的三角形8+6+2+8+6=30个.③直角边长为3的直角三角形4+2+4=10个④直角边长为4的直角三角形有2个.⑤斜边长为2的三角形12+3+1+4=20个.⑥斜边长为4的三角形1+2+1=4个.⑦1~6列依次还有3+3+3+2+3+3=17个.所以三角形的个数为72+30+10+2+20+4+17=155个.故答案为:95;155.5.(2分)在平面直角坐标系中,点P[m(m+1),m﹣1](m为实数)不可能在第二象限.解:(1)当m(m+1)>0时,有m>0m+1>0或m<0m+1<0,所以m>0或m<﹣1,因此m﹣1>﹣1或m﹣1<﹣2,即P[m(m+1),(2)当m(m+1)<0时,有m>0m+1<0或m<0m+1>0,所以﹣1<m<0,因此﹣2<m﹣1<﹣1,即P[m(m+1),综合得,P[m(m+1),m﹣1]不经过第二象限.6.(4分)某校组织师生春游,如果单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可以少租一辆,且余30个座位.则该校去参加春游的人数为270;若已知45座客车的租金为每辆250元,60座客车租金为每辆300元,这次春游同时租用这两种客车,其中60座客车比45座客车多租1辆,所以租金比单独一种客车要节省,按这种方案需要租金1400元.解:设该校去参加春游的人数为a人,则有a45=a+30设租用45座客车x辆,则租用60座客车(x+1)辆,由题意若单独租45座客车需要270÷45=6辆,租金250×6=1500元,若单独租60座客车需要(270+30)÷60=5辆,租金300×5=1500元,则有:250x+300(x+1)<150045x+60(x+1)≥270,解得:2≤x∵x为正整数∴x=2即租45座客车2辆,60座客车3辆,此时租金为:250×2+300×3=1400(元).故答案为270,1400.7.(2分)如图,P是平行四边形ABCD内一点,且S△PAB=5,S△PAD=2,则阴影部分的面积为3.解:∵S△PAB+S△PCD=12S▱ABCD=S△∴S△ACD﹣S△PCD=S△PAB,则S△PAC=S△ACD﹣S△PCD﹣S△PAD,=S△PAB﹣S△PAD,=5﹣2,=3.故答案为:3.二、选择题(共1小题,每小题4分,满分2分)8.(2分)如果a,b,c均为正数,且a(b+c)=152,b(c+a)=162,c(a+b)=170,那么abc的值是()A.672 B.688 C.720 D.750解:∵a(b+c)=152,b(c+a)=162,c(a+b)=170,∴ab+ac=152①,bc+ba=162②,ca+cb=170③,∴①+②+③,并化简,得:ab+bc+ca=242④,④﹣①得:bc=90,④﹣②得:ca=80,④﹣③得:ab=72,∴bc•ca•ab=90×80×72,即(abc)2=7202,∵a,b,c均为正数,∴abc=720.故选:C.三、解答题(共9小题,满分100分)9.(8分)已知a,b,c都是整数,当代数式7a+2b+3c的值能被13整除时,那么代数式5a+7b﹣22c的值是否一定能被13整除,为什么?解:设x,y,z,t是整数,并且假设5a+7b﹣22c=x(7a+2b+3c)+13(ya+zb+tc)(1)比较上式a,b,c的系数,应当有7x+13y=52x+13z=7(2)3x+13t=﹣22,取x=﹣3,可以得到y=2,z=1,t=﹣1,则有13(2a+b﹣c)﹣3(7a+2b+3c)=5a+7b﹣22c(3)既然3(7a+2b+3c)和13(2a+b﹣c)都能被13整除,5a+7b﹣22c就能被13整除.10.(8分)如图所示,在四边形ABCD中,AM=MN=ND,BE=EF=FC,四边形ABEM,MEFN,NFCD的面积分别记为S1,S2和S3,求S2(提示:连接AE、EN、NC和AC)解:如图a所示:连接AE、EN和NC,设四边形AECN的面积为S,∵AM=MN=ND,BE=EF=FC,∴S△AEM=S△MEN,S△CNF=S△EFN,上面两个式子相加得S△AEM+S△CNF=S2并且四边形AECN的面积S=2S2,即:S2=12S,S△AEM+S△CNF=连接AC,如图b所示:∵AM=MN=ND,BE=EF=FC,∴CE=2BE,NA=2DN,∴S△ABE=12S△AEC,S△CDN=12上面两个式子相加得S△ABE+S△CDN=12×四边形AECN的面积所以,S△AEM+S△CNF+S△ABE+S△CDN=12S+12因此S1+S3=S,S2答:S211.(9分)已知n是正整数,且2n+1与3n+1都是完全平方数.是否存在n,使得5n+3是质数?如果存在,请求出所有n的值;如果不存在,请说明理由.解:如果2n+1=k2,3n+1=m2,则5n+3=4(2n+1)﹣(3n+1)=4k2﹣m2=(2k+m)(2k﹣m).因为5n+3>(3n+1)+2=m2+2>2m+1,所以2k﹣m≠1(否则5n+3=2k+m=2m+1).从而5n+3=(2k+m)(2k﹣m)是合数.12.(10分)某市电话号码原为六位数,第一次升位是在首位数和第二位数之间加上3成为一个七位数;第二次升位是在首位数前加上2成为一个八位数,某人发现他家中的电话号码升位后的八位数恰好是原六位数的电话号码33倍.问这家原来的电话号码是多少?解:设原电话号码为abcdef,则升位后为2a3bcdef,令bcdef=x由题意得33ax=2a3x,即33(100000a+x)=20300000+1000000a+x,化简得32x=20300000﹣2300000a(1≤a≤9,0≤x<100000的整数),故0≤x=3125(203﹣23a)<100000,解得171<23a≤203,所以a=8.于是x=3125(203﹣23×8)=59375.故所求的电话号码为859375.13.(10分)如图,一个9×9的方格图,由粗线隔为9个横竖各有3个格的“小九宫”格,其中,有一些方格填有1至9的数字,小鸣在第九行的空格中各填入了一个不大于9的正整数,使每行、每列和每个“小九宫”格内的数字都不重复,然后小鸣将第九行的数字从左向右写成一个9位数.请写出这个9位数,简单说明理由.解:填数的方法是排除法,用(m,n)表示位于第m行和第n列的方格.第七行、第八行和第3列有9,所以,原题图6左下角的“小九宫”格中的9应当填在(9,2)格子中;第1列、第2列和第七行有数字5,所以,在图右下角的“小九宫”格中的数字5只能填在(9,3)中;第七行、第八行有数字6,图6中下部的“小九宫”格的数字6应当填在(9,6);此时,在第九行尚缺数字7和3,由于第9列有数字7,所以,7应当填在(9,8);3自然就填在(9,9)了,填法见图.九位数是:495186273.14.(10分)平面上有6个点,其中任何3个点都不在同一条直线上,以这6个点为顶点可以构造多少个不同的三角形?从这些三角形中选出一些,如果要求其中任何两个三角形没有公共顶点,最多可以选出多少个三角形?如果要求其中任何两个三角形没有公共边,最多可以选出多少个三角形?(前两问不要求说明理由)解:(1)先从6个点中选取1个做三角形的一个顶点,有6种取法;再从余下的5个点中选取1个做三角形的第二个顶点,有5种取法;再从余下的4个点中选取1个做三角形的第三个顶点,有4种取法.因为任何3个点不在同一条直线上,所以,这样选出的三个点可以作出1个三角形.但是,如果选出的三个点相同的话,则作出的三角形相同,三个点相同的取法有3×2×1=6种,所以,以这6个点为顶点可以构造6×5×43×2×1(2)每个三角形有3个顶点,所以,6个点最多只能构造2个没有公共顶点的三角形;(3)用英文大写字母A、B、C、D、E、F记这6个点,假设可以选出两两没有公共边的5个三角形,它们共有15个顶点,需要15个英文大写字母.这里不同的英文大写字母仅有6形两两没有公共边,即除去公共顶点A之外,其余6个顶点互不相同,即表示这6个顶点的字母不相同.但是,除A之外,我们仅有5个不同的字母.所以不可能存在5个三角形,它们两两没有公共边.又显然△ABC,△ADE,△BDF和△CEF这4个三角形两两没有公共边.所以,最多可以选出4个三角形,其中任何两个三角形都没有公共边.15.(15分)壮壮、菲菲、路路出生时,他们的妈妈都是27岁,某天三位妈妈王雪、刘芳和李薇闲谈时,王雪说:“菲菲比刘芳小岁”;李薇说:“路路和刘芳的年龄的和是36岁”,刘芳说:“路路和王雪的年龄的和是35岁”.已知壮壮、菲菲、路路和他们的妈妈6个人年龄的总和是105岁.请回答:王雪是路路的妈妈?壮壮、菲菲和路路的年龄各是5岁,3岁,4岁?解:设刘芳的年龄为x岁.①刘芳和路路的年龄和是36岁,是个偶数,他们的年龄差也是一个偶数,而路路和妈妈的年龄的差是奇数,因此路路的妈妈不是刘芳.注意到菲菲比刘芳小29岁,菲菲的妈妈不是刘芳,所以,壮壮的妈妈是刘芳.②壮壮和妈妈刘芳的年龄的和为(2x﹣27)路路(36﹣x)岁,他的妈妈应当是(36﹣x+27)岁,和为(99﹣2x)菲菲(x﹣29)岁,她的妈妈应当是(x﹣29+27)岁,和为(2x﹣31)由于6个人共105岁,所以,(2x﹣27)+(99﹣2x)+(2x﹣31)=105.③解出x=32,菲菲比刘芳小29岁,所以菲菲3岁;路路和刘芳的年龄的和是36,路路4岁;路路和王雪的年龄的和是35岁,所以王雪31岁

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论