版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届陕西省蓝田县九年级数学第一学期期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.将抛物线y=ax2+bx+c向左平移2个单位,再向下平移3个单位得抛物线y=﹣(x+2)2+3,则()A.a=﹣1,b=﹣8,c=﹣10 B.a=﹣1,b=﹣8,c=﹣16C.a=﹣1,b=0,c=0 D.a=﹣1,b=0,c=62.如图,三个边长均为的正方形重叠在一起,、是其中两个正方形对角线的交点,则两个阴影部分面积之和是()A. B. C. D.3.如图,分别是的边上的点,且,相交于点,若,则的值为()A. B. C. D.4.如图,已知若的面积为,则的面积为()A. B. C. D.5.如图,△ABC中,点D为边BC的点,点E、F分别是边AB、AC上两点,且EF∥BC,若AE:EB=m,BD:DC=n,则()A.若m>1,n>1,则2S△AEF>S△ABD B.若m>1,n<1,则2S△AEF<S△ABDC.若m<1,n<1,则2S△AEF<S△ABD D.若m<1,n>1,则2S△AEF<S△ABD6.若两个最简二次根式和是同类二次根式,则n的值是()A.﹣1 B.4或﹣1 C.1或﹣4 D.47.已知二次函数,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2 B.有最大值0,有最小值﹣1C.有最大值7,有最小值﹣1 D.有最大值7,有最小值﹣28.小华同学某体育项目7次测试成绩如下(单位:分):9,7,1,8,1,9,1.这组数据的中位数和众数分别为()A.8,1 B.1,9 C.8,9 D.9,19.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()A.4 B.5 C.6 D.610.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长尺,绳子长尺,根据题意列方程组正确的是()A. B. C. D.二、填空题(每小题3分,共24分)11.已知两个相似三角形对应中线的比为,它们的周长之差为,则较大的三角形的周长为__________.12.一组数据3,2,1,4,的极差为5,则为______.13.如图,在矩形ABCD中,AB=4,AD=3,以点A为圆心,AD长为半径画弧,交AB于点E,图中阴影部分的面积是______(结果保留π).14.已知两个相似三角形的周长比是,它们的面积比是________.15.如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2.以上结论中,你认为正确的有.(填序号)16.在平面直角坐标系中,已知、两点,以坐标原点为位似中心,相似比为,把线段缩小后得到线段,则的长度等于________.17.有一块三角板,为直角,,将它放置在中,如图,点、在圆上,边经过圆心,劣弧的度数等于_______18.两个相似三角形的面积比为,其中较大的三角形的周长为,则较小的三角形的周长为__________.三、解答题(共66分)19.(10分)已知二次函数的图象顶点是,且经过,求这个二次函数的表达式.20.(6分)时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各是多少元?21.(6分)在“阳光体育”活动时间,小英、小丽、小敏、小洁四位同学进行一次羽毛球单打比赛,要从中选出两位同学打第一场比赛.(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,求恰好选中小丽同学的概率;(2)用画树状图或列表的方法,求恰好选中小敏、小洁两位同学进行比赛的概率.22.(8分)如图,已知一次函数的图象与反比例函数的图象交于点,与轴交于点,连接,点为轴上一点,,连接.(1)求反比例函数与一次函数的解析式;(2)求的面积.23.(8分)某工厂设计了一款成本为20元/件的工艺品投放市场进行试销,经过调查,得到如下数据:销售单价(元/件)…30405060…每天销售量(件)…500400300200…(1)研究发现,每天销售量与单价满足一次函数关系,求出与的关系式;(2)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润8000元?24.(8分)如图,一次函数的图象与反比例函数的图象相交于点,两点,与,轴分别交于,两点.(1)求一次函数的表达式;(2)求的面积.25.(10分)某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?26.(10分)关于x的一元二次方程有两个不相等的实数根.(1)求m的取值范围;(2)若,是一元二次方程的两个根,且,求m的值.
参考答案一、选择题(每小题3分,共30分)1、D【分析】将所得抛物线解析式整理成顶点式形式,然后写出顶点坐标,再根据向右平移横坐标加,向下平移减逆向求出原抛物线的顶点坐标,从而求出原抛物线解析式,再展开整理成一般形式,最后确定出a、b、c的值.【题目详解】解:∵y=-(x+2)2+3,∴抛物线的顶点坐标为(-2,3),∵抛物线y=ax2+bx+c向左平移2个单位,再向下平移3个单位长度得抛物线y=-(x+2)2+3,-2+2=0,3+3=1,∴平移前抛物线顶点坐标为(0,1),∴平移前抛物线为y=-x2+1,∴a=-1,b=0,c=1.故选D.【题目点拨】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减;本题难点在于逆运用规律求出平移前抛物线顶点坐标.2、A【分析】连接AN,CN,通过将每部分阴影的面积都转化为正方形ACFE的面积的,则答案可求.【题目详解】如图,连接AN,CN∵四边形ACFE是正方形∴∵,∴∴∴所以四边形BCDN的面积为正方形ACFE的面积的同理可得另一部分阴影的面积也是正方形ACFE的面积的∴两部分阴影部分的面积之和为正方形ACFE的面积的即故选A【题目点拨】本题主要考查不规则图形的面积,能够利用全等三角形对面积进行转化是解题的关键.3、C【分析】根据题意可证明,再利用相似三角形的性质,相似三角形面积的比等于相似比的平方,即可得出对应边的比值.【题目详解】解:∵∴∴根据相似三角形面积的比等于相似比的平方,可知对应边的比为.故选:C.【题目点拨】本题考查的知识点是相似三角形的性质,主要有①相似三角形周长的比等于相似比;②相似三角形面积的比等于相似比的平方;③相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.4、A【分析】根据相似三角形的性质得出,代入求出即可.【题目详解】解:∵△ADE∽△ABC,AD:AB=1:3,∴,∵△ABC的面积为9,∴,∴S△ADE=1,故选:A.【题目点拨】本题考查了相似三角形的性质定理,能熟记相似三角形的面积比等于相似比的平方是解此题的关键.5、D【分析】根据相似三角形的判定与性质,得出,,从而建立等式关系,得出,然后再逐一分析四个选项,即可得出正确答案.【题目详解】解:∵EF∥BC,若AE:EB=m,BD:DC=n,∴△AEF∽△ABC,∴,∴,∴,∴∴当m=1,n=1,即当E为AB中点,D为BC中点时,,A.当m>1,n>1时,S△AEF与S△ABD同时增大,则或,即2或2>,故A错误;B.当m>1,n<1,S△AEF增大而S△ABD减小,则,即2,故B错误;C.m<1,n<1,S△AEF与S△ABD同时减小,则或,即2或2<,故C错误;D.m<1,n>1,S△AEF减小而S△ABD增大,则,即2<,故D正确.故选D.【题目点拨】本题主要考查了相似三角形的判定与性质,熟练掌握相似三角形的性质是解答本题的关键.6、B【分析】根据同类二次根式的概念可得关于n的方程,解方程可求得n的值,再根据二次根式有意义的条件进行验证即可得.【题目详解】由题意:n2-2n=n+4,解得:n1=4,n2=-1,当n=4时,n2-2n=8,n+4=8,符合题意,当n=-1时,n2-2n=3,n+4=3,符合题意,故选B.【题目点拨】本题考查了同类二次根式,二次根式有意义的条件,解一元二次方程等知识,熟练掌握和灵活运用相关知识是解题的关键.7、D【分析】把函数解析式整理成顶点式的形式,然后根据二次函数的最值问题解答.【题目详解】解:∵y=x2−4x+2=(x−2)2−2,∴在−1≤x≤3的取值范围内,当x=2时,有最小值−2,当x=−1时,有最大值为y=9−2=1.故选D.【题目点拨】本题考查了二次函数的最值问题,把函数解析式转化为顶点式是解题的关键.8、D【解题分析】试题分析:把这组数据从小到大排列:7,8,9,9,1,1,1,最中间的数是9,则中位数是9;1出现了3次,出现的次数最多,则众数是1;故选D.考点:众数;中位数.9、D【解题分析】试题解析:∵OC⊥AB,OC过圆心O点,在中,由勾股定理得:故选D.点睛:垂直于弦的直径平分弦并且平分弦所对的两条弧.10、A【解题分析】本题的等量关系是:木长绳长,绳长木长,据此可列方程组即可.【题目详解】设木条长为尺,绳子长为尺,根据题意可得:.故选:.【题目点拨】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.二、填空题(每小题3分,共24分)11、15【分析】利用相似三角形对应中线的比可得出对应周长的比,根据周长之差为10即可得答案.【题目详解】设较小的三角形的周长为x,∵两个相似三角形对应中线的比为1:3,∴两个相似三角形对应周长的比为1:3,∴较大的三角形的周长为3x,∵它们的周长之差为10,∴3x-x=10,解得:x=5,∴3x=15,故答案为:15【题目点拨】本题考查相似三角形的性质,相似三角形对应中线、高、周长的边都等于相似比;面积比等于相似比的平方.12、-1或1【分析】由题意根据极差的公式即极差=最大值-最小值.可能是最大值,也可能是最小值,分两种情况讨论.【题目详解】解:当x是最大值,则x-(1)=5,所以x=1;当x是最小值,则4-x=5,所以x=-1;故答案为-1或1.【题目点拨】本题考查极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值,同时注意分类的思想的运用.13、12﹣π【分析】用矩形的面积减去四分之一圆的面积即可求得阴影部分的面积.【题目详解】解:在矩形中,,故答案为:.【题目点拨】本题考查了扇形的面积的计算及矩形的性质,能够了解两个扇形构成半圆是解答本题的关键.14、【解题分析】根据相似三角形的性质直接解答即可.解:∵两个相似三角形的周长比是1:3,∴它们的面积比是,即1:1.故答案为1:1.本题考查的是相似三角形的性质,即相似三角形(多边形)的周长的比等于相似比;面积的比等于相似比的平方.15、①③④【解题分析】解:∵FH与CG,EH与CF都是矩形ABCD的对边AD、BC的一部分,∴FH∥CG,EH∥CF,∴四边形CFHE是平行四边形,由翻折的性质得,CF=FH,∴四边形CFHE是菱形,(故①正确);∴∠BCH=∠ECH,∴只有∠DCE=30°时EC平分∠DCH,(故②错误);点H与点A重合时,设BF=x,则AF=FC=8﹣x,在Rt△ABF中,AB2+BF2=AF2,即42+x2=(8﹣x)2,解得x=3,点G与点D重合时,CF=CD=4,∴BF=4,∴线段BF的取值范围为3≤BF≤4,(故③正确);过点F作FM⊥AD于M,则ME=(8﹣3)﹣3=2,由勾股定理得,EF==2,(故④正确);综上所述,结论正确的有①③④共3个,故答案为①③④.考点:翻折变换的性质、菱形的判定与性质、勾股定理16、【分析】已知A(6,2)、B(6,0)两点则AB=2,以坐标原点O为位似中心,相似比为,则A′B′:AB=2:2.即可得出A′B′的长度等于2.【题目详解】∵A(6,2)、B(6,0),∴AB=2.又∵相似比为,∴A′B′:AB=2:2,∴A′B′=2.【题目点拨】本题主要考查位似的性质,位似比就是相似比.17、1°【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得,继而求得答案.【题目详解】如图,连接OA,∵OA,OB为半径,∴,∴,∴劣弧的度数等于,故答案为:1.【题目点拨】本题考查了圆心角、弧、弦之间的关系以及圆周角定理,是基础知识要熟练掌握.18、1【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【题目详解】∵两个相似三角形的面积比为∴两个相似三角形的相似比为∴两个相似三角形的周长也比为∵较大的三角形的周长为∴较小的三角形的周长为故答案为:1.【题目点拨】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.三、解答题(共66分)19、【分析】根据二次函数解析式的顶点式以及待定系数法,即可得到答案.【题目详解】把顶点代入得:,把代入得:,∴二次函数的表达式为:.【题目点拨】本题主要考查二次函数的待定系数法,掌握二次函数解析式的顶点式是解题的关键.20、红土”百香果每千克25元,“黄金”百香果每千克30元【解题分析】设“红土”百香果每千克x元,“黄金”百香果每千克y元,由题意列出方程组,解方程组即可.【题目详解】解:设“红土”百香果每千克x元,“黄金”百香果每千克y元,由题意得:,解得:;答:“红土”百香果每千克25元,“黄金”百香果每千克30元.【题目点拨】本题考查了二元一次方程组的应用以及二元一次方程组的解法;根据题意列出方程组是解题的关键.21、(1);(2).【分析】(1)由题意直接利用概率公式求解即可求得答案;(2)根据题意列出表格,然后由表格求得所有等可能的结果与恰好选中小敏、小洁两位同学的情况,再利用概率公式求解即可求得答案.【题目详解】解:(1)若已确定小英打第一场,再从其余三位同学中随机选取一位,共有3种情况,而选中小丽的情况只有一种,所以P(恰好选中小丽)=;(2)列表如下:所有可能出现的情况有12种,其中恰好选中小敏、小洁两位同学组合的情况有两种,所以P(小敏,小洁)==.【题目点拨】本题考查列表法与树状图法.22、(1)y1=x+1,;(2)14【分析】(1)将分别代入两个函数解析式得到方程组,解方程组后即可得出函数解析式;(2)根据勾股定理得出OD=OA=5,根据题意得出,OC=1,CD=4;最后根据S△ABD=S△DCB+S△DCA即可得出答案.【题目详解】解:(1)由题意得,解得,∴,∴y1=x+1,(2)由勾股定理得,A(3,4)∴OA=,∴OD=OA=5,当y1=0时,0=x+1∴x=-1,OC=1,CD=4S△ABD=S△DCB+S△DCA=.【题目点拨】本题考查了反比例函数与一次函数的交点问题,代入求值法是解题的关键.23、(1)y=﹣10x+800;(2)单价定为40元/件时,工艺厂试销该工艺品每天获得的利润8000元【分析】(1)直接利用待定系数法求解可得;(2)根据“总利润单件利润销售量”可得关于的一元二次方程,解之即可得.【题目详解】解:(1)设y=kx+b,根据题意可得,解得:,每天销售量与单价的函数关系为:y=﹣10x+800,(2)根据题意,得:(x﹣20)(﹣10x+800)=8000,整理,得:x2﹣100x+2400=0,解得:x1=40,x2=60,∵销售单价最高不能超过45元/件,∴x=40,答:销售单价定为40元/件时,工艺厂试销该工艺品每天获得的利润8000元.【题目点拨】本题主要考查了一次函数及一元二次方程的应用,解题的关键是熟练掌握待定系数法求函数解析式及找到题目蕴含的相等关系.24、(1);(2)8【分析】(1)根据题意先把,代入确定A点和B点坐标,然后利用待定系数法求一次函数解析式即可;(2)根据题意分别求出C、D点的坐标,进而根据面积公式进行运算可得结论.【题目详解】解:(1)把,代入得,把和代入得,所以一次函数表达式为.(2)在中含得,令得,,,.【题目点拨】本题考查反比例函数与一次函数的交点问题,注意掌握求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解以及掌握待定系数法求函数解析式.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论