




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届重庆市南岸区重庆南开融侨中学数学九上期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.下列函数的对称轴是直线的是()A. B. C. D.2.如图,将一副三角板如图放置,如果,那么点到的距离为()A. B. C. D.3.寒假即将来临,小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明选择到甲社区参加实践活动的可能性为()A. B. C. D.4.如图,A、B、C三点在⊙O上,且∠AOB=80°,则∠ACB等于A.100° B.80° C.50° D.40°5.一元二次方程x2﹣2x+3=0的一次项和常数项分别是()A.2和3 B.﹣2和3 C.﹣2x和3 D.2x和36.下列各数中是无理数的是()A.0 B. C. D.0.57.在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是G,过点B作BE⊥CG,垂足为E,且在AD上,BE交PC于点F,那么下列选项正确的是()①BP=BF;②如图1,若点E是AD的中点,那么△AEB≌△DEC;③当AD=25,且AE<DE时,则DE=16;④在③的条件下,可得sin∠PCB=;⑤当BP=9时,BE∙EF=108.A.①②③④ B.①②④⑤ C.①②③⑤ D.①②③④⑤8.在同一平面直角坐标系中,函数与的图象可能是()A. B.C. D.9.矩形不具备的性质是()A.是轴对称图形 B.是中心对称图形 C.对角线相等 D.对角线互相垂直10.如图,l1∥l2∥l3,直线a,b与l1,l2,l3分别相交于点A、B、C和点D、E、F,若,DE=4,则DF的长是()A. B. C.10 D.611.如图,中,,,,分别为边的中点,将绕点顺时针旋转到的位置,则整个旋转过程中线段所扫过部分的面积(即阴影部分面积)为()A. B. C. D.12.如图,直线y=x+2与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣,0) B.(﹣,0) C.(﹣,0) D.(﹣,0)二、填空题(每题4分,共24分)13.若一个正多边形的每一个外角都等于36°,那么这个正多边形的中心角为__________度.14.一张矩形的纸片ABCD中,AB=10,AD=8.按如图方式折,使A点刚好落在CD上。则折痕(阴影部分)面积为_________________.15.半径为5的圆内接正六边形的边心距为__________.16.体育课上,小聪,小明,小智,小慧分别在点O处进行了一次铅球试投,铅球分别落在图中的点A,B,C,D处,则他们四人中,成绩最好的是______.17.如果一个扇形的弧长等于它的半径,那么此扇形成为“等边扇形”.则半径为2的“等边扇形”的面积为.18.如图,已知反比例函数y=与一次函数y=x+1的图象交于点A(a,﹣1)、B(1,b),则不等式≥x+1的解集为________.三、解答题(共78分)19.(8分)某化工厂要在规定时间内搬运1200吨化工原料.现有,两种机器人可供选择,已知型机器人比型机器人每小时多搬运30吨型,机器人搬运900吨所用的时间与型机器人搬运600吨所用的时间相等.(1)求两种机器人每小时分别搬运多少吨化工原料.(2)该工厂原计划同时使用这两种机器人搬运,工作一段时间后,型机器人又有了新的搬运任务需离开,但必须保证这批化工原料在11小时内全部搬运完毕.问型机器人至少工作几个小时,才能保证这批化工原料在规定的时间内完成?20.(8分)如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.(1)求证:四边形BDFG为菱形;(2)若AG=13,CF=6,求四边形BDFG的周长.21.(8分)如图,直线分别与轴交于点,与轴交于点,与双曲线交于点.(1)求与的值;(2)已知是轴上的一点,当时,求点的坐标.22.(10分)如图,在等腰Rt△ABC中,∠ACB=90°,AC=BC,点P为BC边上一点(不与B、C重合),连接PA,以P为旋转中心,将线段PA顺时针旋转90°,得到线段PD,连接DB.(1)请在图中补全图形;(2)∠DBA的度数.23.(10分)如图,四边形ABCD是⊙O的内接四边形,∠AOC=116°,则∠ADC的角度是_____.24.(10分)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中的值和“E”组对应的圆心角度数;(3)请估计该校2000名学生中每周的课外阅读时间不小于6小时的人数.25.(12分)为吸引市民组团去风景区旅游,观光旅行社推出了如下收费标准:某单位员工去风景区旅游,共支付给旅行社旅游费用10500元,请问该单位这次共有多少员工去风景区旅游?26.解方程(1)(2)
参考答案一、选择题(每题4分,共48分)1、C【分析】根据二次函数的性质分别写出各选项中抛物线的对称轴,然后利用排除法求解即可.【题目详解】A、对称轴为y轴,故本选项错误;B、对称轴为直线x=3,故本选项错误;C、对称轴为直线x=-3,故本选项正确;D、∵=∴对称轴为直线x=3,故本选项错误.故选:C.【题目点拨】本题考查了二次函数的性质,主要利用了对称轴的确定,是基础题.2、B【分析】作EF⊥BC于F,设EF=x,根据三角函数分别表示出BF,CF,根据BD∥EF得到△BCD∽△FCE,得到,代入即可求出x.【题目详解】如图,作EF⊥BC于F,设EF=x,又∠ABC=45°,∠DCB=30°,则BF=EF÷tan45°=x,FC=EF÷tan30°=x∵BD∥EF∴△BCD∽△FCE,∴,即解得x=,x=0舍去故EF=,选B.【题目点拨】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的判定及解直角三角形的应用.3、B【解题分析】由小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,直接利用概率公式求解即可求得答案.【题目详解】解:∵小明要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,
∴小明选择到甲社区参加实践活动的可能性为:.
故选:B.【题目点拨】本题考查概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4、D【解题分析】试题分析:∵∠ACB和∠AOB是⊙O中同弧所对的圆周角和圆心角,且∠AOB=80°,∴∠ACB=∠AOB=40°.故选D.5、C【分析】根据一元二次方程一次项和常数项的概念即可得出答案.【题目详解】一元二次方程x2﹣2x+3=0的一次项是﹣2x,常数项是3故选:C.【题目点拨】本题主要考查一元二次方程的一次项与常数项,注意在求一元二次方程的二次项,一次项,常数项时,需要先把一元二次方程化成一般形式.6、C【分析】根据无理数的定义,分别进行判断,即可得到答案.【题目详解】解:根据题意,是无理数;0,,0.5是有理数;故选:C.【题目点拨】本题考查了无理数的定义,解题的关键是熟记无理数的定义进行解题.7、C【分析】易证BE∥PG可得∠FPG=∠PFB,再由折叠的性质得∠FPB=∠FPG,所以∠FPB=∠PFB,根据等边对等角即可判断①;由矩形的性质得∠A=∠D=90°,AB=CD,用SAS即可判定全等,从而判断②;证明△ABE∽△DEC,得出比例式建立方程求出DE,从而判断③;证明△ECF∽△GCP,进而求出PC,即可得到sin∠PCB的值,从而判断④;证明△GEF∽△EAB,利用对应边成比例可得出结论,从而判断⑤.【题目详解】①∵四边形ABCD为矩形,顶点B的对应点是G,∴∠G=90°,即PG⊥CG,∵BE⊥CG∴BE∥PG∴∠FPG=∠PFB由折叠的性质可得∠FPB=∠FPG,∴∠FPB=∠PFB∴BP=BF,故①正确;②∵四边形ABCD为矩形,∴∠A=∠D=90°,AB=DC又∵点E是AD的中点,∴AE=DE在△AEB和△DEC中,∴△AEB≌△DEC(SAS),故②正确;③当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,即,解得AE=9或16,∵AE<DE,∴AE=9,DE=16,故③正确;④在Rt△ABE中,在Rt△CDE中,由①可知BE∥PG,∴△ECF∽△GCP∴设BP=BF=PG=a,则EF=BE-BF=15-a,由折叠性质可得CG=BC=25,∴,解得,在Rt△PBC中,∴sin∠PCB=,故④错误.⑤如图,连接FG,
∵∠GEF=∠PGC=90°,
∴∠GEF+∠PGC=180°,
∴BF∥PG
∵BF=PG,
∴四边形BPGF是菱形,
∴BP∥GF,GF=BP=9
∴∠GFE=∠ABE,
∴△GEF∽△EAB,
∴
∴BE•EF=AB•GF=12×9=108,故⑤正确;①②③⑤正确,故选C.【题目点拨】本题考查四边形综合问题,难度较大,需要熟练掌握全等三角形的判定,相似三角形的判定和性质,以及勾股定理和三角函数,综合运用所学几何知识是关键.8、D【分析】分两种情况讨论,当k>0时,分析出一次函数和反比例函数所过象限;再分析出k<0时,一次函数和反比例函数所过象限,符合题意者即为正确答案.【题目详解】当时,一次函数经过一、二、三象限,反比例函数经过一、三象限;当时,一次函数经过一、二、四象限,反比例函数经过二、四象限.观察图形可知,只有A选项符合题意.
故选:D.【题目点拨】本题主要考查了反比例函数的图象和一次函数的图象,熟悉两函数中k和b的符号对函数图象的影响是解题的关键.9、D【分析】依据矩形的性质进行判断即可.【题目详解】解:矩形不具备的性质是对角线互相垂直,故选:D.【题目点拨】本题考查了矩形的性质,熟练掌握性质是解题的关键10、C【解题分析】试题解析:又DE=4,∴EF=6,∴DF=DE+EF=10,故选C.11、C【分析】连接BH,BH1,先证明△OBH≌△O1BH1,再根据勾股定理算出BH,再利用扇形面积公式求解即可.【题目详解】∵O、H分别为边AB,AC的中点,将△ABC绕点B顺时针旋转120°到△A1BC1的位置,∴△OBH≌△O1BH1,利用勾股定理可求得BH=,所以利用扇形面积公式可得.故选C.【题目点拨】本题考查全等三角形的判定及性质、勾股定理、扇形面积的计算,利用全等对面积进行等量转换方便计算是关键.12、A【分析】根据一次函数解析式可以求得,,根据平面直角坐标系里线段中点坐标公式可得,,根据轴对称的性质和两点之间线段最短的公理求出点关于轴的对称点,连接,线段的长度即是的最小值,此时求出解析式,再解其与轴的交点即可.【题目详解】解:,,,,同理可得点关于轴的对称点;连接,设其解析式为,代入与可得:,令,解得..【题目点拨】本题是结合了一次函数的动点最值问题,熟练掌握一次函数的图象与性质,把点的坐标与线段长度灵活转化为两点间的问题是解答关键.二、填空题(每题4分,共24分)13、1【分析】根据题意首先由多边形外角和定理求出正多边形的边数n,再由正多边形的中心角=,即可得出答案.【题目详解】解:∵正多边形的每一个外角都等于1°,∴正多边形的边数为:,∴这个正多边形的中心角为:.故答案为:1.【题目点拨】本题考查正多边形的性质和多边形外角和定理以及正多边形的中心角的计算方法,熟练掌握正多边形的性质并根据题意求出正多边形的边数是解决问题的关键.14、25【分析】根据折叠利用方程求出AE的长即可【题目详解】设,则∵折叠∴∴∴∴DF=4∴解得∴故答案为25【题目点拨】本题考查了折叠与勾股定理,利用折叠再结合勾股定理计算是解题关键。15、【分析】连接OA、OB,作OH⊥AB,根据圆内接正六边形的性质得到△ABO是等边三角形,利用垂径定理及勾股定理即可求出边心距OH.【题目详解】如图,连接OA、OB,作OH⊥AB,∵六边形ABCDEF是圆内接正六边形,∴∠FAB=∠ABC=180-,∴∠OAB=∠OBA=60,∴△ABO是等边三角形,∴AB=OA=5,∵OH⊥AB,∴AH=2.5,∴OH=,故答案为:.【题目点拨】此题考查圆内接正六边形的性质,垂径定理,勾股定理.解题中熟记正六边形的性质得到∠FAB=∠ABC=120是解题的关键,由此即可证得△ABO是等边三角形,利用勾股定理解决问题.16、小智【分析】通过比较线段的长短,即可得到OC>OD>OB>OA,进而得出表示最好成绩的点为点C.【题目详解】由图可得,OC>OD>OB>OA,∴表示最好成绩的点是点C,故答案为:小智.【题目点拨】本题主要参考了比较线段的长短,比较两条线段长短的方法有两种:度量比较法、重合比较法.17、1【解题分析】试题分析:根据题意可得圆心角的度数为:,则S==1.考点:扇形的面积计算.18、0〈x〈1或x〈-2【分析】利用一次函数图象和反比例函数图象性质数形结合解不等式:【题目详解】解:a+1=-1,a=-2,由函数图象与不等式的关系知,0<x<1或x<-2.故答案为0<x<1或x<-2.三、解答题(共78分)19、(1)型机器人每小时搬运90吨化工原料,型机器人每小时搬运60吨化工原料;(2)A型机器人至少工作6小时,才能保证这批化工原料在规定的时间内完成.【分析】(1)设B型机器人每小时搬运x吨化工原料,则A型机器人每小时搬运(x+30)吨化工原料,根据A型机器人搬运900吨所用的时间与B型机器人搬运600吨所用的时间相等建立方程求出其解就可以得出结论.
(2)设A型机器人工作t小时,根据这批化工原料在11小时内全部搬运完毕列出不等式求解.【题目详解】解:(1)设型机器人每小时搬运吨化工原料,则型机器人每小时搬运吨化工原料,根据题意,得,解得.经检验,是所列方程的解.当时,.答:型机器人每小时搬运90吨化工原料,型机器人每小时搬运60吨化工原料;(2)设型机器人工作小时,根据题意,得,解得.答:A型机器人至少工作6小时,才能保证这批化工原料在规定的时间内完成.【题目点拨】本题考查的是分式方程应用题和列不等式求解问题,找相等关系式是解题关键,(1)根据A型机器人搬运900千克所用的时间与B型机器人搬运600千克所用的时间相等建立方程,分式方程应用题的解需要双检,一检是否是方程的根,二检是否符合题意;(2)总工作量-A型机器人的工作量≤B型机器人11小时的工作量,列不等式求解.20、(1)证明见解析;(2)1.【分析】(1)由BD=FG,BD//FG可得四边形BDFG是平行四边形,根据CE⊥BD可得∠CFA=∠CED=90°,根据直角三角形斜边中线的性质可得BD=DF=AC,即可证得结论;(2)设GF=x,则AF=13﹣x,AC=2x,利用勾股定理列方程可求出x的值,进而可得答案.【题目详解】(1)∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,BD//AG,∴∠CFA=∠CED=90°,∵点D是AC中点,∴DF=AC,∵∠ABC=90°,BD为AC的中线,∴BD=AC,∴BD=DF,∴平行四边形BGFD是菱形.(2)设GF=x,则AF=13﹣x,AC=2x,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即(13﹣x)2+62=(2x)2,解得:x=5,x=﹣(舍去),∵四边形BDFG是菱形,∴四边形BDFG的周长=4GF=1.【题目点拨】本题考查菱形的判定与性质及直角三角形斜边中线的性质,熟练掌握直角三角形斜边中线等于斜边一半的性质是解题关键.21、(1)12;(2)或.【解题分析】(1)把点(4,m)代入直线求得m,然后代入与反比例函数,求出k;(2)设点P的纵坐标为y,一次函数与x轴相交于点A,与y轴相交于点C,则A(-2,0),C(0,1),然后根据S△ABP=S△APC+S△BPC列出关于y的方程,解方程求得即可.【题目详解】解:(1)点在一次函数上,,又点在反比例函数上,;(2)设点的纵坐标为,一次函数与轴相交于点,与轴相交于点,,,又点在轴上,,,即,,或或.【题目点拨】本题考查的是反比例函数的图象与一次函数图象的交点问题,三角形的面积等知识,求出交点坐标,利用数形结合思想是解题的重点.22、(1)见解析;(2)90°【分析】(1)依题意画出图形,如图所示;(2)先判断出∠BPD=∠EPA,从而得出△PDB≌△PAE,简单计算即可.【题目详解】解:(1)依题意补全图形,如图所示,(2)过点P作PE∥AC,∴∠PEB=∠CAB,∵AB=BC,∴∠CBA=∠CAB,∴∠PEB=∠PBE,∴PB=PE,∵∠BPD+∠DPE=∠EPA+∠DPE=90°,∴∠BPD=∠EPA,∵PA=PD,∴△PDB≌△PAE(SAS),∵∠PBA=∠PEB=(180°﹣90°)=45°,∴∠PBD=∠PEA=180°﹣∠PEB=135°,∴∠DBA=∠PBD﹣∠PBA=90°.【题目点拨】本题考查了作图旋转变换,全等三角形的性质和判定,判断是解本题的关键,也是难点.23、58°【分析】直接利用圆周角定理求解.【题目详解】∵∠AOC和∠ADC都对,∴∠ADC=∠AOC=×116°=58°.故答案为:58°.【题目点拨】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.24、(1)补全频数分布直方图,见解析;(2)“E”组对应的圆心角度数为14.4°;(3)该校2000名学生中每周的课外阅读时间不小于6小时的人数为580人.【分析】(1)根据第二组频数为21,所占百分比为21%,求出数据总数,再用数据总数减去其余各组频数得到第四组频数,进而补全频数分布直方图;
(2)用第三组频数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年青海货运从业资格证考试试卷题库
- 小学英语命题试卷创意
- 小学英语试卷模式
- 健身馆员工合同范本
- 减水剂供货合同范本
- FOB买卖合同范本
- 美容师初级习题库及答案
- 工业锅炉司炉模考试题与答案
- 个人年度简短的工作总结
- 中级电工模拟习题含参考答案
- 2025年全国普通话水平测试50套复习题库及答案
- 心理战、法律战、舆论战
- 《餐饮感动服务》课件
- 肩袖损伤课件
- 骨科手术术后切口护理技巧培训课程
- DB3207-T 1047-2023 羊肚菌-豆丹综合种养技术规程
- 修补墙面的报告范文
- 2025年全国煤矿企业安全管理人员考试题库(含答案)
- 《义务教育语文课程标准(2022年版)》知识培训
- 《中小学校食品安全与膳食经费管理工作指引》知识培训
- 成品油运输 投标方案(技术方案)
评论
0/150
提交评论