铜陵市重点中学2024届数学九年级第一学期期末学业质量监测试题含解析_第1页
铜陵市重点中学2024届数学九年级第一学期期末学业质量监测试题含解析_第2页
铜陵市重点中学2024届数学九年级第一学期期末学业质量监测试题含解析_第3页
铜陵市重点中学2024届数学九年级第一学期期末学业质量监测试题含解析_第4页
铜陵市重点中学2024届数学九年级第一学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

铜陵市重点中学2024届数学九年级第一学期期末学业质量监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图:已知CD为⊙O的直径,过点D的弦DE∥OA,∠D=50°,则∠C的度数是()A.25° B.40° C.30° D.50°2.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+m上的三点,则y1,y2,y3的大小关系为()A.y3>y2>y1 B.y1>y2>y3 C.y1>y3>y2 D.y2>y1>y33.如图,是圆内接四边形的一条对角线,点关于的对称点在边上,连接.若,则的度数为()A.106° B.116° C.126° D.136°4.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA'B'C'与矩形OABC关于点O位似,且矩形OA'B'C'的面积等于矩形OABC面积的,那么点B'的坐标是()A.(3,2) B.(-2,-3) C.(2,3)或(-2,-3) D.(3,2)或(-3,-2)5.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘一,其浓度为贝克/立方米,数据用科学记数法可表示为()A. B. C. D.6.若,则的值为()A. B. C. D.7.若,则的值是()A. B. C. D.08.如图,点D在以AC为直径的⊙O上,如果∠BDC=20°,那么∠ACB的度数为()A.20° B.40° C.60° D.70°9.已知sinα=,求α.若以科学计算器计算且结果以“度,分,秒”为单位,最后应该按键()A.AC B.2ndF C.MODE D.DMS10.如图1,在菱形ABCD中,∠A=120°,点E是BC边的中点,点P是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H是图象上的最低点,则a+b的值为()A.7 B. C. D.二、填空题(每小题3分,共24分)11.已知:如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过G作GE⊥AD于点E,若AB=2,且∠1=∠2,则下列结论中一定成立的是_____(把所有正确结论的序号都填在横线上).①DF⊥AB;②CG=2GA;③CG=DF+GE;④S四边形BFGC=﹣1.12.一元二次方程的根是.13.如图,直线,等腰直角三角形的三个顶点分别在,,上,90°,交于点,已知与的距离为2,与的距离为3,则的长为________.14.抛物线的对称轴过点,点与抛物线的顶点之间的距离为,抛物线的表达式为______.15.如图,中,,则__________.16.如图,在中,,,,用含和的代数式表示的值为:_________.17.如图,已知,,则_____.18.分解因式:x3﹣16x=______.三、解答题(共66分)19.(10分)已知二次函数y=x2+4x+k-1.(1)若抛物线与x轴有两个不同的交点,求k的取值范围;(2)若抛物线的顶点在x轴上,求k的值.20.(6分)如图,在中,连接,点,分别是的点(点不与点重合),,相交于点.(1)求,的长;(2)求证:~;(3)当时,请直接写出的长.21.(6分)如图,是圆的直径,点在圆上,分别连接、,过点作直线,使.求证:直线与圆相切.22.(8分)如图,正方形ABCD的边长为1,点E是AD边上的动点,从点A沿AD向点D运动,以BE为边,在BE的上方作正方形BEFG,连接CG.(1)求证:;(2)若设AE=x,DH=y,当x取何值时,y有最大值?并求出这个最大值;(3)连接BH,当点E运动到AD的何位置时有?23.(8分)已知x=1是一元二次方程(a﹣2)x2+(a2﹣3)x﹣a+1=0的一个根,求a的值.24.(8分)空间任意选定一点,以点为端点,作三条互相垂直的射线,,.这三条互相垂直的射线分别称作轴、轴、轴,统称为坐标轴,它们的方向分别为(水平向前),(水平向右),(竖直向上)方向,这样的坐标系称为空间直角坐标系.将相邻三个面的面积记为,,,且的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体所在的面与轴垂直,所在的面与轴垂直,所在的面与轴垂直,如图1所示.若将轴方向表示的量称为几何体码放的排数,轴方向表示的量称为几何体码放的列数,二轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了排列层,用有序数组记作,如图3的几何体码放了排列层,用有序数组记作.这样我们就可用每一个有序数组表示一种几何体的码放方式.(1)有序数组所对应的码放的几何体是______________;A.B.C.D.(2)图4是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为(______,_______,_______),组成这个几何体的单位长方体的个数为____________个.(3)为了进一步探究有序数组的几何体的表面积公式,某同学针对若干个单位长方体进行码放,制作了下列表格:几何体有序数组单位长方体的个数表面上面积为S1的个数表面上面积为S2的个数表面上面积为S3的个数表面积根据以上规律,请直接写出有序数组的几何体表面积的计算公式;(用,,,,,表示)(4)当,,时,对由个单位长方体码放的几何体进行打包,为了节约外包装材料,我们可以对个单位长方体码放的几何体表面积最小的规律进行探究,请你根据自己探究的结果直接写出使几何体表面积最小的有序数组,这个有序数组为(______,_______,______),此时求出的这个几何体表面积的大小为____________(缝隙不计)25.(10分)已知抛物线的顶点在第一象限,过点作轴于点,是线段上一点(不与点、重合),过点作轴于点,并交抛物线于点.(1)求抛物线顶点的纵坐标随横坐标变化的函数解析式,并直接写出自变量的取值范围;(2)若直线交轴的正半轴于点,且,求的面积的取值范围.26.(10分)已知抛物线与x轴分别交于,两点,与y轴交于点C.(1)求抛物线的表达式及顶点D的坐标;(2)点F是线段AD上一个动点.①如图1,设,当k为何值时,.②如图2,以A,F,O为顶点的三角形是否与相似?若相似,求出点F的坐标;若不相似,请说明理由.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据DE∥OA证得∠AOD=50°即可得到答案.【题目详解】解:∵DE∥OA,∠D=50°,∴∠AOD=∠D=50°,∴∠C=∠AOD=25°.故选:A.【题目点拨】此题考查平行线的性质,同弧所对的圆周角与圆心角的关系,利用平行线证得∠AOD=50°是解题的关键.2、B【分析】本题要比较y1,y2,y3的大小,由于y1,y2,y3是抛物线上三个点的纵坐标,所以可以根据二次函数的性质进行解答:先求出抛物线的对称轴,再由对称性得A点关于对称轴的对称点A'的坐标,再根据抛物线开口向下,在对称轴右边,y随x的增大而减小,便可得出y1,y2,y3的大小关系.【题目详解】∵抛物线y=﹣(x+1)2+m,如图所示,∴对称轴为x=﹣1,∵A(﹣2,y1),∴A点关于x=﹣1的对称点A'(0,y1),∵a=﹣1<0,∴在x=﹣1的右边y随x的增大而减小,∵A'(0,y1),B(1,y2),C(2,y3),0<1<2,∴y1>y2>y3,故选:B.【题目点拨】本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,据图判断.3、B【解题分析】根据圆的内接四边形对角互补,得出∠D的度数,再由轴对称的性质得出∠AEC的度数即可.【题目详解】解:∵四边形ABCD是圆的内接四边形,∴∠D=180°-∠ABC=180°-64°=116°,∵点D关于的对称点在边上,∴∠D=∠AEC=116°,故答案为B.【题目点拨】本题考查了圆的内接四边形的性质及轴对称的性质,解题的关键是熟知圆的内接四边形对角互补及轴对称性质.4、D【分析】利用位似图形的性质得出位似比,进而得出对应点的坐标.【题目详解】解:∵矩形OA′B′C′的面积等于矩形OABC面积的,

∴两矩形面积的相似比为:1:2,

∵B的坐标是(6,4),∴点B′的坐标是:(3,2)或(−3,−2).

故答案为:D.【题目点拨】此题主要考查了位似变换的性质,得出位似图形对应点坐标性质是解题关键.5、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】0.0000963,这个数据用科学记数法可表示为9.63×.

故选:A.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6、A【分析】根据比例的性质,可用b表示a,根据分式的性质,可得答案.【题目详解】由,得4b=a−b.,解得a=5b,故选:A.【题目点拨】本题考查了比例的性质,利用比例的性质得出b表示a是解题关键.7、D【分析】设,则a=2k,b=3k,代入式子化简即可.【题目详解】解:设,∴a=2k,b=3k,∴==0,故选D.【题目点拨】本题考查比例线段,解题的关键是学会利用参数解决问题,属于中考常考题型.8、D【分析】由AC为⊙O的直径,可得∠ABC=90°,根据圆周角定理即可求得答案.【题目详解】∵AC为⊙O的直径,∴∠ABC=90°,∵∠BAC=∠BDC=20°,∴.故选:D.【题目点拨】本题考查了圆周角定理,正确理解直径所对的圆周角是直角,同圆或等圆中,同弧或等弧所对的圆周角相等是解题的关键.9、D【分析】根据利用科学计算器由三角函数值求角度的使用方法,容易进行选择.【题目详解】若以科学计算器计算且结果以“度,分,秒”为单位,最后应该按DMS,故选:D.【题目点拨】本题考查科学计算器的使用方法,属基础题.10、C【分析】由A、C关于BD对称,推出PA=PC,推出PC+PE=PA+PE,推出当A、P、E共线时,PE+PC的值最小,观察图象可知,当点P与B重合时,PE+PC=6,推出BE=CE=2,AB=BC=4,分别求出PE+PC的最小值,PD的长即可解决问题.【题目详解】解:∵在菱形ABCD中,∠A=120°,点E是BC边的中点,∴易证AE⊥BC,∵A、C关于BD对称,∴PA=PC,∴PC+PE=PA+PE,∴当A、P、E共线时,PE+PC的值最小,即AE的长.观察图象可知,当点P与B重合时,PE+PC=6,∴BE=CE=2,AB=BC=4,∴在Rt△AEB中,BE=,∴PC+PE的最小值为,∴点H的纵坐标a=,∵BC∥AD,∴=2,∵BD=,∴PD=,∴点H的横坐标b=,∴a+b=;故选C.【题目点拨】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.二、填空题(每小题3分,共24分)11、①②③【分析】①由四边形ABCD是菱形,得出对角线平分对角,求得∠GAD=∠2,得出AG=GD,AE=ED,由SAS证得△AFG≌△AEG,得出∠AFG=∠AEG=90°,即可得出①正确;②由DF⊥AB,F为边AB的中点,证得AD=BD,证出△ABD为等边三角形,得出∠BAC=∠1=∠2=30°,由AC=2AB•cos∠BAC,AG,求出AC,AG,即可得出②正确;③由勾股定理求出DF,由GE=tan∠2•ED求出GE,即可得出③正确;④由S四边形BFGC=S△ABC﹣S△AGF求出数值,即可得出④不正确.【题目详解】∵四边形ABCD是菱形,∴∠FAG=∠EAG,AB=AD,BC∥AD,∴∠1=∠GAD.∵∠1=∠2,∴∠GAD=∠2,∴AG=GD.∵GE⊥AD,∴GE垂直平分AD,∴AE=ED.∵F为边AB的中点,∴AF=AE,在△AFG和△AEG中,∵,∴△AFG≌△AEG(SAS),∴∠AFG=∠AEG=90°,∴DF⊥AB,∴①正确;连接BD交AC于点O.∵DF⊥AB,F为边AB的中点,∴AFAB=1,AD=BD.∵AB=AD,∴AD=BD=AB,∴△ABD为等边三角形,∴∠BAD=∠BCD=60°,∴∠BAC=∠1=∠2=30°,∴AC=2AO=2AB•cos∠BAC=2×22,AG,∴CG=AC﹣AG=2,∴CG=2GA,∴②正确;∵GE垂直平分AD,∴EDAD=1,由勾股定理得:DF,GE=tan∠2•ED=tan30°×1,∴DF+GECG,∴③正确;∵∠BAC=∠1=30°,∴△ABC的边AC上的高等于AB的一半,即为1,FGAG,S四边形BFGC=S△ABC﹣S△AGF211,∴④不正确.故答案为:①②③.【题目点拨】本题考查了菱形的性质、全等三角形的判定与性质、勾股定理、三角函数、线段垂直平分线的性质、含30°角的直角三角形的性质等知识;本题综合性强,有一定难度.12、【解题分析】四种解一元二次方程的解法即:直接开平方法,配方法,公式法,因式分解法.注意识别使用简单的方法进行求解,此题应用因式分解法较为简捷,因此,.13、【分析】作AF⊥,BE⊥,证明△ACF≌△CBE,求出CE,根据勾股定理求出BC、AC,作DH⊥,根据DH∥AF证明△CDH∽△CAF,求出CD,再根据勾股定理求出BD.【题目详解】如图,作AF⊥,BE⊥,则∠AFC=BEC=90°,由题意得BE=3,AF=2+3=5,∵△是等腰直角三角形,90°,∴AC=BC,∠BCE+∠ACF=90°,∵∠BCE+∠CBE=90°,∴∠ACF=∠CBE,∴△ACF≌△CBE,∴CE=AF=5,CF=BE=3,∴,作DH⊥,∴DH∥AF∴△CDH∽△CAF,∴,∴,∴CD=,∴BD=,故答案为:.【题目点拨】此题考查等腰直角三角形的性质,全等三角形的判定及性质,相似三角形的判定及性质,平行线间的距离处处相等的性质,正确引出辅助线解决问题是解题的关键.14、y=-x2-2x或y=-x2-2x+8【分析】根据题意确定出抛物线顶点坐标,进而确定出m与n的值,即可确定出抛物线解析式.【题目详解】∵抛物线的对称轴过点,∴设顶点坐标为:根据题意得:,解得:或抛物线的顶点坐标为(-1,1)或(-1,9),可得:,或,解得:,或,

则该抛物线解析式为:或,

故答案为:或.【题目点拨】本题考查了待定系数法求二次函数解析式,以及二次函数的性质,熟练掌握待定系数法是解本题的关键.15、17【解题分析】∵Rt△ABC中,∠C=90°,∴tanA=,∵,∴AC=8,∴AB==17,故答案为17.16、【分析】分别在Rt△ABC和Rt△ADC中用AC和的三角函数表示出AB和AD,进一步即可求出结果.【题目详解】解:在Rt△ABC中,∵,∴,在Rt△ADC中,∵,∴,∴.故答案为:.【题目点拨】本题考查了三角函数的知识,属于常考题型,熟练掌握正弦的定义是解题的关键.17、105°【解题分析】如图,根据邻补角的定义求出∠3的度数,继而根据平行线的性质即可求得答案.【题目详解】∵∠1+∠3=180°,∠1=75°,∴∠3=105°,∵a//b,∴∠2=∠3=105°,故答案为:105°.【题目点拨】本题考查了邻补角的定义,平行线的性质,熟练掌握两直线平行,内错角相等是解本题的关键.18、x(x+4)(x–4).【解题分析】先提取x,再把x2和16=42分别写成完全平方的形式,再利用平方差公式进行因式分解即可.解:原式=x(x2﹣16)=x(x+4)(x﹣4),故答案为x(x+4)(x﹣4).三、解答题(共66分)19、k<1;k=1.【解题分析】试题分析:(1)、当抛物线与x轴有两个不同的交点,则△>0,从而求出k的取值范围;(2)、顶点在x轴上则说明顶点的纵坐标为0.试题解析:(1)、∵抛物线与x轴有两个不同的交点,∴b2-4ac>0,即16-4k+4>0.解得k<1.(2)、∵抛物线的顶点在x轴上,∴顶点纵坐标为0,即=0.解得k=1.考点:二次函数的顶点20、(1)AD=10,BD=10;(2)见解析;(3)AG=.【分析】(1)由可证明△ABC∽△DAC,通过相似比即可求出AD,BD的长;(2)由(1)可证明∠B=∠DAB,再根据已知条件证明∠AFC=∠BEF即可;(3)过点C作CH∥AB,交AD的延长线于点H,根据平行线的性质得到,计算出CH和AH的值,由已知条件得到≌,设AG=x,则AF=15-x,HG=18-x,再由平行线的性质得到,表达出即可解出x,即AG的值.【题目详解】解:(1)∵,∴,又∵∠ACB=∠DCA,∴△ABC∽△DAC,∴,即,解得:CD=8,AD=10,∴BD=BC-CD=18-8=10,∴AD=10,BD=10;(2)由(1)可知,AD=BD=10,∴∠B=∠DAB,∵∠AFE=∠B+∠BEF,∴∠AFC+∠CFE=∠B+∠BEF,∵,∴∠AFC=∠BEF,又∵∠B=∠DAB,∴~;(3)如图,过点C作CH∥AB,交AD的延长线于点H,∴,即,解得:CH=12,HD=8,∴AH=AD+HD=18,若,则≌;∴BF=AG,设AG=x,则AF=15-x,HG=18-x,∵CH∥AB,∴,即,解得:,(舍去)∴AG=.【题目点拨】本题考查了相似三角形的判定与性质以及平行线分线段成比例,解题的关键是熟悉相似三角形的判定,并灵活作出辅助线.21、见解析【分析】根据直径所对的圆周角是直角,可得,然后根据直角三角形的性质和已知条件即可证出,最后根据切线的判定定理即可证出直线与圆相切.【题目详解】证明:∵是圆的直径∴∴∵∴,即∵点在圆上∴直线与圆相切.【题目点拨】此题考查的是圆周角定理的推论和切线的判定,掌握直径所对的圆周角是直角和切线的判定定理是解决此题的关键.22、(1)见解析;(2)当,有最大值;(3)当点E是AD的中点【分析】(1)由同角的余角相等得到∠ABE=∠CBG,从而全等三角形可证;(2)先证明△ABE∽△DEH,得到,即可求出函数解析式y=-x2+x,继而求出最值.(3)由(2),再由,可得,则问题可证.【题目详解】(1)证明:∵∠ABE+∠EBC=∠CBG+∠EBC=90°∴∠ABE=∠CBG在△AEB和△CGB中:∠BAE=∠BCG=90°,AB=BC,∠ABE=∠CBG∴△AEB≌△CGB(ASA)(2)如图∵四边形ABCD,四边形BEFG均为正方形∴∠A=∠D=90°,∠HEB=90°∴∠DEH+∠AEB=90°,∠DEH+∠DHE=90°∴∠DHE=∠AEB∴△ABE∽△DEH∴∴∴故当,有最大值(3)当点E是AD的中点时有△BEH∽△BAE.理由:∵点E是AD的中点时由(2)可得又∵△ABE∽△DEH∴,又∵∴又∠BEH=∠BAE=90°∴△BEH∽△BAE【题目点拨】本题结合正方形的性质考查二次函数的综合应用,以及正方形的性质和相似三角形的判定,解答关键是根据题意找出相似三角形构造等式.23、a=﹣2【分析】根据一元二次方程的解的定义将x=1代入方程即可求出答案.【题目详解】解:将x=1代入(a﹣2)x2+(a2﹣3)x﹣a+1=0,得(a﹣2)+(a2﹣3)﹣a+1=0,∴a2﹣4=0,∴a=±2,由于a﹣2≠0,故a=﹣2.【题目点拨】本题考查一元二次方程的解,解题的关键是熟练运用一元二次方程的解的定义,本题属于基础题型.24、(1)B;(2)2,3,2,1;(3)S(x,y,z)=2(yzS1+xzS2+xyS3);(4)2,2,3,2【分析】(1)根据几何体码放的情况,即可得到答案;(2)根据几何体的三视图,可知:几何体有2排,3列,2层,进而即可得到答案;(3)根据有序数组的几何体,表面上面积为S1的个数为2yz个,表面上面积为S2的个数为2xz个,表面上面积为S3的个数为2xy个,即可得到答案;(4)由题意得:xyz=1,=4yz+6xz+8xy,要使的值最小,x,y,z应满足x≤y≤z(x,y,z为正整数),进而进行分类讨论,即可求解.【题目详解】(1)∵有序数组所对应的码放的几何体是:3排列4层,∴B选项符合题意,故选B.(2)根据几何体的三视图,可知:几何体有2排,3列,2层,∴这种码放方式的有序数组为(2,3,2),∵几何体有2层,每层有6个单位长方体,∴组成这个几何体的单位长方体的个数为1个.故答案是:2,3,2;1.(3)∵有序数组的几何体,表面上面积为S1的个数为2yz个,表面上面积为S2的个数为2xz个,表面上面积为S3的个数为2xy个,∴=2(yzS1+xzS2+xyS3).(4)由题意得:xyz=1,=4yz+6xz+8xy,∴要使的值最小,x,y,z应满足x≤y≤z(x,y,z为正整数).∴在由1个单位长方体码放的几何体中,满足条件的有序数组为(1,1,1),(1,2,6),(1,3,4),(2,2,3),∵,,,,∴由1个单位长方体码放的几何体中,表面积最小的有序数组为:(2,2,3),最小表面积为:2.故答案是:2,2,3;2.【题目点拨】本题主要考查几何体的三视图与表面积的综合,掌握几何体的三视图的定义和表面积公式,是解题的关键.25、(1)函数解析式为y=x+4(x>0);(2)0≤S≤.【分析】(1)抛物线解析式为y=-x2+2mx-m2+m+4,设顶点的坐标为(x,y),利用抛物线顶点坐标公式得到x=m,y=m-4,然后消去m得到y与x的关系式即可.(2)如图,根据已知得出OE=4-2m,E(0,2m-4),设直线AE的解析式为y=kx+2m-4,代入A的坐标根据待定系数法求得解析式,然后联立方程求得交点P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论