关于教资试讲篇目2023九年级数学上教案5篇_第1页
关于教资试讲篇目2023九年级数学上教案5篇_第2页
关于教资试讲篇目2023九年级数学上教案5篇_第3页
关于教资试讲篇目2023九年级数学上教案5篇_第4页
关于教资试讲篇目2023九年级数学上教案5篇_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第关于教资试讲篇目2023九年级数学上教案5篇关于教资试讲篇目2023九年级数学上教案5篇

数学是一种思考的乐趣,它让我们沉浸在问题的世界中,享受着挑战和解决的过程,收获智慧和成就感。这里给大家分享一些关于教资试讲篇目2023九年级数学上教案,供大家参考学习。

教资试讲篇目2023九年级数学上教案(篇1)

回顾与思考

1、复习中心对称和对称中心的概念。

2、作中心对称图形的方法和步骤。

3、作线段AO关于点O的对称图形(图1)

4、作△AOB关于点O的对称图形(图2)

复习的目的是巩固学生对中心对称、和对称中心的概念的理解。通过作图,达到了复习中心对称的知识,同时为下面的中心对称图形打好铺垫,并体现出中心对称和中心对称图形内在的联系。

探究与发现

问题1:

观察前面图一得到的线段AB,若将它绕点O旋转180°,你有什么发现

学生:按要求操作后叙述发现。

归纳:由于OA=OB,所以线段AB绕它的点O旋转180°后与它本身重合。

问题2:

观察上面所作的图2,并连接AD、BC,得到的是什么四边形若将它绕对角线的交点O旋转180°,你又发现了什么

学生:按要求操作后叙述发现。

归纳:根据中心对称的原理,绕点O旋转180°后,ABCD与它本身重合。

定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。探究过程中,学生动手和观察课件动画展示,进行对比并发表他们对结果的描述,发现图形的特点,促进学生参与课堂,培养学生的观察和归纳能力,并能激发学生的求知欲。通过复习中的作图顺利的发现“绕一点旋转180°后重合”这一结论,为定义打下基础。经历应用定义判断中心对称图形的过程,从而达到了解定义、应用定义的目的。

理解与应用

1、利用课件,展示美丽的中心对称图形。

2、通过课件中的动画展示,加深理解“图形旋转180°后与原图形重合”的概念。

问题3:

现在我们已知线段、平行四边形是中心对称图形,你还知道那些常见图形是中心对称图形

学生:回答问题并互相评价。

教师:倾听并鼓励回答问题的同学,给出正确结论。

3、观察下面图形,它们是中心对称图形吗

教师说明:

中心对称图形具有匀称美观的性质,很多建筑物和工艺品上常采用这种图案,另外,具有中心对称图形形状的物体,能够在平面内绕对称中心平稳的旋转,在生产中旋转的零部件的形状常设计成中心对称图形。

4、如图的汽车标志中,那些是中心对称图形

5、探究中心对称图形的性质

板书:中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

6、怎样找出一个中心对称图形的对称中心

板书:两组对应点连结所成线段的交点

7、请作出平行四边形的对称中心。

学生作图后分组讨论交流并回答。通过课件展示的中心对称图形,让学生体验到中心对称图形的美,让学生认识到中心对称图形就在我们身边。

从线段、平行四边形是中心对称图形发散到判断其它图形是否是中心对称图形,以利于培养学生的探索性思维能力和发散思维能力,激发学生的求知欲。

学生能否发现旋转180°后重合这一关键点,能否正确判断一个图形是中心对称图形。

中心对称图形的.性质要结合中心对称的知识进行教学。

中心对称是一种对称关系,中心对称图形是指具有中心对称性质的图形。

中心对称图形的性质的理解可以揭示中心对称和中心对称图形这两个概念的之间的区别与联系。

巩固与提高1、线段、平行四边形、等边三角形、正方形、圆、矩形这些图形中,是轴对称图形的有:,是中心对称图形的有:

2、中国文字丰富多彩、含义深刻,有许多是中心对称的,你能找出几个吗练习1是区别轴对称图形和中心对称图形,练习2培养学生的发散性思维能力。

收获与感悟

1、本节通过观察我们的生活中存在的中心对称图形,进行了探究和学习,学会了判断中心对称图形的方法。

2、判断中心对称图形的方法:图形旋转180°后与原图形重合。

3、中心对称图形是具有中心对称性的图形,轴对称图形是具有轴对称性的图形。帮助学生将新知识进行系统化,强调了判断中心对称图形的方法,区分了中心对称图形和轴对称图形的概念。

布置作业

1、课本P68第2,5题

2、收集生活中的一些中心对称图形

中心对称教学计划表到这里就结束了,希望能帮助大家提高学习成绩。

教资试讲篇目2023九年级数学上教案(篇2)

【知识与技能】

1.会用描点法画二次函数y=ax2+bx+c的图象.

2.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x的增减性.

3.能通过配方求出二次函数y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.

【过程与方法】

1.经历探索二次函数y=ax2+bx+c(a≠0)的.图象的作法和性质的过程,体会建立二次函数y=ax2+bx+c(a≠0)对称轴和顶点坐标公式的必要性.

2.在学习y=ax2+bx+c(a≠0)的性质的过程中,渗透转化(化归)的思想.

【情感态度】

进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识.

【教学重点】

①用配方法求y=ax2+bx+c的顶点坐标;②会用描点法画y=ax2+bx+c的图象并能说出图象的性质.

【教学难点】

能利用二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c(a≠0)的图象.

一、情境导入,初步认识

请同学们完成下列问题.

1.把二次函数y=-2x2+6x-1化成y=a(x-h)2+k的形式.

2.写出二次函数y=-2x2+6x-1的开口方向,对称轴及顶点坐标.

3.画y=-2x2+6x-1的图象.

4.抛物线y=-2x2如何平移得到y=-2x2+6x-1的图象.

5.二次函数y=-2x2+6x-1的y随x的增减性如何?

【教学说明】上述问题教师应放手引导学生逐一完成,从而领会y=ax2+bx+c与y=a(x-h)2+k的转化过程.

二、思考探究,获取新知

探究1如何画y=ax2+bx+c图象,你可以归纳为哪几步?

学生回答、教师点评:

一般分为三步:

1.先用配方法求出y=ax2+bx+c的对称轴和顶点坐标.

2.列表,描点,连线画出对称轴右边的部分图象.

3.利用对称点,画出对称轴左边的部分图象.

探究2二次函数y=ax2+bx+c图象的性质有哪些?你能试着归纳吗?

教资试讲篇目2023九年级数学上教案(篇3)

2.4二次函数=ax2+bx+c的图象

本节课在二次函数=ax2和=ax2+c的图象的基础上,进一步研究=a(x-h)2和=a(x-h)2+的图象,并探索它们之间的关系和各自的性质.旨在全面掌握所有二次函数的图象和性质的变化情况.同时对二次函数的研究,经历了从简单到复杂,从特殊到一般的过程:先是从=x2开始,然后是=ax2,=ax2+c,最后是=a(x-h)2,=a(x-h)2+,=ax2+bx+c.符合学生的认知特点,体会建立二次函数对称轴和顶点坐标公式的必要性.

在教学中,主要是让学生自己动手画图象,通过自己的观察、交流、对比、概括和反思[

等探索活动,使学生达到对抛物线自身特点的认识和对二次函数性质的理解.并能利用它的性质解决问题.

2.4二次函数=ax2+bx+c的图象(一)

教学目标

(一)教学知识点[

1.能够作出函数=a(x-h)2和=a(x-h)2+的图象,并能理解它与=ax2的图象的关系.理解a,h,对二次函数图象的影响.

2.能够正确说出=a(x-h)2+图象的开口方向、对称轴和顶点坐标.

(二)能力训练要求

1.通过学生自己的探索活动,对二次函数性质的研究,达到对抛物线自身特点的认识和对二次函数性质的理解.

2.经历探索二次函数的图象的作法和性质的过程,培养学生的探索能力.

(三)情感与价值观要求

1.经历观察、猜想、总结等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.

2.让学生学会与人合作,并能与他人交流思维的过程和结果.

教学重点[:Wz5u.c]

1.经历探索二次函数=ax2+bx+c的图象的作法和性质的过程.

2.能够作出=a(x-h)2和=a(x-h)2+的图象,并能理解它与=ax2的图象的关系,理解a、h、对二次函数图象的影响.

3.能够正确说出=a(x-h)2+图象的开口方向、对称轴和顶点坐标.

教学难点

能够作出=a(x-h)2和=a(x-h)2+的图象,并能够理解它与=ax2的图象的关系,理解a、h、对二次函数图象的影响.

教学方法

探索——比较——总结法.

教具准备

投影片四张

第一张:(记作2.4.1A)

第二张:(记作2.4.1B)

第三张:(记作2.4.1C)

第四张:(记作2.4.1D)

教学过程

Ⅰ.创设问题情境、引入新课

[师]我们已学习过两种类型的二次函数,即=ax2与=ax2+c,知道它们都是轴对称图形,对称轴都是轴,有最大值或最小值.顶点都是原点.还知道=ax2+c的图象是函数=ax2的图象经过上下移动得到的,那么=ax2的图象能否左右移动呢它左右移动后又会得到什么样的函数形式,它又有哪些性质呢本节课我们就来研究有关问题.

Ⅱ.新课讲解

一、比较函数=3x2与=3(X-1)2的图象的性质.

投影片:(2.4A)

(1)完成下表,并比较3x2和3(x-1)2的值,

它们之间有什么关系

X-3-2-101234

3x2

3(x-1)2

(2)在下图中作出二次函数=3(x-1)2的图象.你是怎样作的

(3)函数=3(x-1)2的图象与=3x2的图象有什么关系它是轴对称图形吗它的对称轴和顶点坐标分别是什么

(4)x取哪些值时,函数=3(x-1)2的值随x值的增大而增大x取哪些值时,函数=3(x-1)2的值随x值的增大而减小

[师]请大家先自己填表,画图象,思考每一个问题,然后互相讨论,总结.

[生](1)第二行从左到右依次填:27.12,3,0,3,12,27,48;第三行从左到右依次填48,27,12,3,0,3,12,27.

(2)用描点法作出=3(x-1)2的图象,如上图.

(3)二次函数)=3(x-1)2的图象与=3x2的图象形状相同,开口方向也相同,但对称轴和顶点坐标不同,=3(x-1)2的图象的对称轴是直线x=1,顶点坐标是(1,0).

(4)当x1时,函数=3(x-1)2的值随x值的增大而增大,x1时,=3(x-1)2的值随x值的增大而减小.

[师]能否用移动的观点说明函数=3x2与=3(x-1)2的图象之间的关系呢

[生]=3(x-1)2的图象可以看成是函数)=3x2的图象整体向右平移得到的.

[师]能像上节课那样比较它们图象的性质吗

[生]相同点:

a.图象都中抛物线,且形状相同,开口方向相同.

b.都是轴对称图形.

c.都有最小值,最小值都为0.

d.在对称轴左侧,都随x的增大而减小.在对称轴右侧,都随x的增大而增大.

不同点:

a.对称轴不同,=3x2的对称轴是轴=3(x-1)2的对称轴是x=1.

b.它们的位置不问.[:Wz5u.c]

c.它们的顶点坐标不同.=3x2的顶点坐标为(0,0),=3(x-1)2的顶点坐标为(1,0),

联系:

把函数=3x2的图象向右移动一个单位,则得到函数=3(x-1)2的图像.

二、做一做

投影片:(2.4.1B)

在同一直角坐标系中作出函数=3(x-1)2和=3(x-1)2+2的图象.并比较它们图象的性质.

[生]图象如下

它们的图象的性质比较如下:

相同点:

a.图象都是抛物线,且形状相同,开口方向相同.

b.都足轴对称图形,对称轴都为x=1.

c.在对称轴左侧,都随x的增大而减小,在对称轴右侧,都随x的增大而增大.

不同点:

a.它们的顶点不同,最值也不同.=3(x-1)2的顶点坐标为(1.0),最小值为0.=3(x-1)2+2的顶点坐标为(1,2),最小值为2.

b.它们的位置不同.

联系:

把函数=3(x-1)2的图象向上平移2个单位,就得到了函数=3(x-1)2+2的图象.

三、总结函数=3x2,=3(x-1)2,=3(x-1)2+2的图象之间的关系.

[师]通过上画的讨论,大家能够总结出这三种函数图象之间的关系吗

[生]可以.

二次函数=3x2,=3(x-1)2,=3(x-1)2+2的图象都是抛物线.并且形状相同,开口方向相同,只是位置不同,顶点不同,对称轴不同,将函数=3x2的图象向右平移1个单位,就得到函数=3(x-1)2的图象;再向上平移2个单位,就得到函数=3(x-1)2+2的图象.

[师]大家还记得=3x2与=3x2-1的图象之间的关系吗

[生]记得,把函数=3x2向下平移1个平位,就得到函数=3x2-1的图象.

[师]你能系统总结一下吗

[生]将函数=3x2的图象向下移动1个单位,就得到了函数=3x2-1的图象,向上移动1个单位,就得到函数=3x2+1的图象;将=3x2的图象向右平移动1个单位,就得到函数=3(x-1)2的图象:向左移动1个单位,就得到函数=3(x+1)2的图象;由函数=3x2向右平移1个单位、再向上平移2个单位,就得到函数=3(x-1)2+2的图象.

[师]下面我们就一般形式来进行总结.

投影片:(2.4.1C)

一般地,平移二次函数=ax2的图象便可得到二次函数为=ax2+c,=a(x-h)2,=a(x-h)2+的图象.

(1)将=ax2的图象上下移动便可得到函数=ax2+c的图象,当c0时,向上移动,当c0时,向下移动.

(2)将函数=ax2的图象左右移动便可得到函数=a(x-h)2的图象,当h0时,向右移动,当h0时,向左移动.

(3)将函数=ax2的图象既上下移,又左右移,便可得到函数=a(x-h)+的图象.

因此,这些函数的图象都是一条抛物线,它们的开口方向,对称轴和顶点坐标与a,h,的值有关.

下面大家经过讨论之后,填写下表:

=a(x-h)2+开口方向对称轴顶点坐标

a>0

a<0

四、议一议

投影片:(2,4.1D)

(1)二次函数=3(x+1)2的图象与二次函数=3x2的图象有什么关系它是轴对称图形吗它的对称轴和顶点坐标分别是什么

(2)二次函数=-3(x-2)2+4的图象与二次函数=-3x2的图象有什么关系它是轴对称图形吗它的对称轴和顶点坐标分别是什么

(3)对于二次函数=3(x+1)2,当x取哪些值时,的值随x值的增大而增大当x取哪些值时,的值随x值的增大而减小二次函数=3(x+1)2+4呢

[师]在不画图象的情况下,你能回答上面的问题吗

[生](1)二次函数=3(x+1)2的图象与=3x2的图象形状相同,开口方向也相同,但对称轴和顶点坐标不同,=3(x+1)2的图象的对称轴是直线x=-1,顶点坐标是(-1,0).只要将=3x2的图象向左平移1个单位,就可以得到=3(x+1)2的图象.

(2)二次函数=-3(x-2)2+4的图象与=-3x2的图象形状相同,只是位置不同,将函数=-3x2的图象向右平移2个单位,就得到=-3(x-2)2的图象,再向上平移4个单位,就得到=-3(x-2)2+4的图象=-3(x-2)2+4的图象的对称轴是直线x=2,顶点坐标是(2,4).

(3)对于二次函数=3(x+1)2和=3(x+1)2+4,它们的对称轴都是x=-1,当x-1时,的值随x值的增大而减小;当x-1时,的值随x值的增大而增大.

Ⅲ.课堂练习

随堂练习

Ⅳ.课时小结

本节课进一步探究了函数=3x2与=3(x-1)2,=3(x-1)2+2的图象有什么关系,对称轴和顶点坐标分别是什么这些问题.并作了归纳总结.还能利用这个结果对其他的函数图象进行讨论.

Ⅴ.课后作业

习题2.4

Ⅵ.活动与探究

二次函数=(x+2)2-1与=(x-1)2+2的图象是由函数=x2的图象怎样移动得到的它们之间是通过怎样移动得到的

解:=(x+2)2-1的图象是由=x2的图象向左平移2个单位,再向下平移1个单位得到的,=(x-1)2+2的图象是由=x2的图象向右平移1个单位,再向上平移2个单位得到的.

=(x+2)2-1的图象向右平移3个单位,再向上平移3个单位得到=(x-1)2+2的图象.

=(x-1)2+2的图象向左平移3个单位,再向下平移3个单位得到=(x+2)2-1的图象.

板书设计

4.2.1二次函数=ax2+bx+c的图象(一)一、1.比较函数=3x2与=3(x-1)2的

图象和性质(投影片2.4.1A)

2.做一做(投影片2.4.1B)

3.总结函数=3x2,=3(x-1)2=3(x-1)2+2的图象之间的关系(投影片2.4.1C)

4.议一议(投影片2.4.1D)

二、课堂练习

1.随堂练习

2.补充练习

三、课时小结

四、课后作业

备课资料

参考练习

在同一直角坐标系内作出函数=-x2,=-x2-1,=-(x+1)2-1的图象,并讨论它们的性质与位置关系.

解:图象略

它们都是抛物线,且开口方向都向下;对称轴分别为轴轴,直线x=-1;顶点坐标分别为(0,0),(0,-1),(-1,-1).

=-x2的图象向下移动1个单位得到=-x2-1的图象;=-x2的图象向左移动1个单位,向下移动1个单位,得到=-(x+1)2-1的图象.

教资试讲篇目2023九年级数学上教案(篇4)

学习目标:

1、使学生会用列一元二次方程的方法解决有关增长率的应用题;

2、进一步培养学生分析问题、解决问题的能力。

学习重点:

会列一元二次方程解关于增长率问题的应用题。

学习难点:

如何分析题意,找出等量关系,列方程。

学习过程:

一、复习提问:

列一元二次方程解应用题的一般步骤是什么

二、探索新知

1.情境导入

问题:“坡耕地退耕还林还草”是国家为了解决西部地区水土流失生态问题、帮助广大农民脱贫致富的一项战略措施,某村村长为带领全村群众自觉投入“坡耕地退耕还林还草”行动,率先示范.20_年将自家的坡耕地全部退耕,并于当年承包了30亩耕地的还林还草及管理任务,而实际完成的亩数比承包数增加的百分率为x,并保持这一增长率不变,20_年村长完成了36.3亩坡耕地还林还草任务,求①增长率x是多少②该村有50户人家,每户均地村长20_年完成的亩数为准,国家按每亩耕地500斤粮食给予补助,则国家将对该村投入补助粮食多少万斤

2.合作探究、师生互动

教师引导学生分析关于环保的情境导入问题,这是一个平均增长率问题,它的基数是30亩,平均增长的百分率为x,那么第一次增长后,即20_年实际完成的亩数是30(1+x),第二次增长后,即20_年实际完成的亩数是30(1+x)2,而这一年村长完成的亩数正好是36.3亩.

教师引导学生运用方程解决问题:

①30(1+x)2=36.3;(1+x)2=1.21;1+x=±1.1;x1=0.1=10%,x2=-2.1(舍去),所以增长的百分率为10%.

②全村坡耕地还林还草为50×36.3=1815(亩),国家将补助粮食1815×500=907500(斤)=90.75(万斤).

三、例题学习

说明:题目中求平均每月增长的百分率,直接设增长的百分率为x,好处在于计算简便且直接得出所求。

例、某产品原来每件是600元,由于连续两次降价,现价为384元,如果两降价的百分率相同,求每次降价百分之几

(小组合作交流教师点拨)

时间基数降价降价后价钱

第一次600600x600(1-x)

第二次600(1-x)600(1-x)x600(1-x)2

(由学生写出解答过程)

四、巩固练习

一商店1月份的利润是2500元,3月份的利润达到3000元,这两个月的利润平均增长的百分率是多少(精确到0.1%)

五、课堂总结:

1、善于将实际问题转化为数学问题,严格审题,弄清各数据间相互关系,正确列出方程。

2、注意解方程中的巧算和方程两个根的取舍问题。

六、反馈练习:

1.某商品计划经过两个月的时间将售价提高20%,设每月平均增长率为x,则列出的方程为()

A.x+(1+x)x=20%B.(1+x)2=20%

C.(1+x)2=1.2D.(1+x%)2=1+20%

2.某工厂计划两年内降低成本36%,则平均每年降低成本的百分率是()

3.某种药剂原售价为4元,经过两次降价,现在每瓶售价为2.56元,问平均每次降低百分之几

教资试讲篇目2023九年级数学上教案(篇5)

教学目标:

1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型

2、理解什么是一元二次方程及一元二次方程的一般形式。

3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。

教学重点

1、一元二次方程及其它有关的概念。

2、利用实际问题建立一元二次方程的数学模型。

教学难点

1、建立一元二次方程实际问题的数学模型.

2、把一元二次方程化为一般形式

教学方法:指导自学,自主探究

课时:第一课时

教学过程:

(学生通过导学提纲,了解本节课自己应该掌握的内容)

一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)

1、请认真完成课本P39—40议一议以上的内容;化简上述三个方程.。

2、你发现上述三个方程有什么共同特点?

你能把这些特点用一个方程概括出来吗?

3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念

你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?

二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)

1、下列哪些是一元二次方程?哪些不是?

①②③

④x2+2x-3=1+x2⑤ax2+bx+c=0

2、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。

(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)

3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?

4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程在什么条件下它是一元一次方程

5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?

三、反思:(学生,进一步加深本节课所学内容)

这节课你学到了什么?

四、自查自省:(通过当堂小测,及时发现问题,及时应对)

1、下列方程中是一元二次方程的有()A、1个B、2个C、3个D、4个

(1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。

3、关于x的方程(m2-4)x2+(m+2)x+2m+3=0,当m__________时,是一元二次方程;当m__________时,是一元一次方程.

作业:必做题:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论