版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海东方世纪学校2022年高二数学文知识点试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.将曲线C按伸缩变换公式变换得曲线方程为,则曲线C的方程为(
)A.
B
.
c.
D.
4x=1参考答案:D2.四棱锥的底面为菱形,侧棱与底面垂直,则侧棱与菱形对角线的关系是().A.平行 B.相交不垂直C.异面垂直 D.相交垂直参考答案:C∵底面,平面,∴,又∵底面为菱形,∴,∴平面,∴,又,异面,所以侧棱与的关系是异面垂直,故选.3.下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=1参考答案:C【考点】双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】对选项首先判定焦点的位置,再求渐近线方程,即可得到答案.【解答】解:由A可得焦点在x轴上,不符合条件;由B可得焦点在x轴上,不符合条件;由C可得焦点在y轴上,渐近线方程为y=±2x,符合条件;由D可得焦点在y轴上,渐近线方程为y=x,不符合条件.故选C.【点评】本题考查双曲线的方程和性质,主要考查双曲线的焦点和渐近线方程的求法,属于基础题.4.设,则(
)A. B.C. D.参考答案:C分析:由题意将替换为,然后和比较即可.详解:由题意将替换,据此可得:.本题选择C选项.点睛:本题主要考查数学归纳法中由k到k+1的计算方法,意在考查学生的转化能力和计算求解能力.5.已知复数z满足,则z=(
)A、-5
B、5
C、-3
D、3参考答案:B6.在四面体ABCD中,已知棱AC的长为,其余各棱长都为1,则二面角A﹣BD﹣C的余弦值为(
)A.﹣ B.﹣ C.﹣ D.﹣参考答案:B【考点】二面角的平面角及求法.【专题】空间角.【分析】先找二面角A﹣BD﹣C的平面角,根据已知条件,取BD中点E,连接AE,CE,则∠AEC是二面角A﹣BD﹣C的平面角,并且根据已知边的长度得,所以由余弦定理即可求cos∠AEC.【解答】解:如图,取BD中点E,连接AE,CE,则由已知条件知:AE⊥BD,CE⊥BD;∴∠AEC是二面角A﹣BD﹣C的平面角,并且AE=CE=,AC=;∴在△ACE中由余弦定理得:cos∠AEC=.故选B.【点评】考查二面角及二面角的平面角的定义,以及找二面角平面角的方法,余弦定理.7.进位制是人们为了计数和运算方便而约定的记数系统,在日常生活中,我们最熟悉、最常用的是十进制.如图是实现将某进制数a化为十进制数b的程序框图,若输入的k=2,a=110,n=3,则输出的b=()A.14 B.12 C.6 D.3参考答案:C【考点】程序框图.【分析】模拟执行程序框图,可得程序框图的功能是计算并输出b的值,当i>3时循环结束,从而得解.【解答】解:模拟执行程序框图,可得程序框图的功能是计算并输出b=0×20+1×21+1×22=6.故选:C.8.已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点,若三棱锥O﹣ABC体积的最大值为36,则球O的表面积为()A.36π B.64π C.144π D.256π参考答案:C【考点】球的体积和表面积.【专题】计算题;空间位置关系与距离.【分析】当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,利用三棱锥O﹣ABC体积的最大值为36,求出半径,即可求出球O的表面积.【解答】解:如图所示,当点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大,设球O的半径为R,此时VO﹣ABC=VC﹣AOB===36,故R=6,则球O的表面积为4πR2=144π,故选C.【点评】本题考查球的半径与表面积,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O﹣ABC的体积最大是关键.9.方程的两个根可分别作为
的离心率。A.椭圆和双曲线
B.两条抛物线
C.椭圆和抛物线D.两个椭圆参考答案:A10.将9个相同的小球放入3个不同的盒子,要求每个盒子中至少有一个小球,且每个盒子里的小球个数都不相同,则不同的放法有A.15种
B.18种
C.19种
D.21种参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.若实数满足条件则的最大值是________参考答案:略12.“开心辞典”中有这样的问题:给出一组数,要你根据规律填出后面的第几个数,现给出一组数:,﹣,,﹣,,它的第8个数可以是.参考答案:﹣【考点】F1:归纳推理.【分析】将这一组数:,﹣,,﹣,,化为,,,,,规律易找.【解答】解:将这一组数:,﹣,,﹣,,化为,,,,,分母上是2的乘方,分子组成等差数列,奇数项符号为正,偶数项符号为负,通项公式可为an=(﹣1)n+1,它的第8个数可以是an=﹣=﹣故答案为:﹣13.盒中有5个红球,11个蓝球。红球中有2个玻璃球,3个木质球;蓝球中有4个玻璃球,7个木质球。现从中任取一球,假设每个球摸到的可能性都相同,若已知取到的球是玻璃球,则它是蓝球的概率是———————参考答案:2/314.在一只布袋中有1形状大小一样的32颗棋子,其中有16颗红棋子,16棵绿棋子。某人无放回地依次从中摸出1棵棋子,则第1次摸出红棋子,第2次摸出绿棋子的概率是
。参考答案:15.________参考答案:因,而,,应填答案。16.在50件产品中有4件是次品,从中任意抽出5件,至少有3件是次品的抽法共
种(用数字作答).参考答案:4186【考点】D3:计数原理的应用.【分析】根据题意,至少有3件次品可分为有3件次品与有4件次品两种情况,有4件次品抽法C44C461,有3件次品的抽法C43C462,根据分类计数原理得到结果.【解答】解:根据题意,“至少有3件次品”可分为“有3件次品”与“有4件次品”两种情况,有4件次品抽法C44C461有3件次品的抽法C43C462共有C44C461+C43C462=4186种不同抽法故答案为:4186【点评】本题考查分类计数原理,本题解题的关键是注意至少有3件次品包括2中情况,不要写出三种情况的错解,即加上有5件次品,本题是一个基础题.17.已知函数f(x)=ex-2x+a有零点,则a的取值范围是_________.参考答案:(-,2ln2-2]三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在多面体ABCDEF中,底面ABCD是梯形,四边形ADEF是正方形,,,,,(I)求证:平面平面;(II)设M为线段EC上一点,,求二面角的平面角的余弦值.参考答案:(1)因为,,,所以为直角三角形,且同理因为,,所以为直角三角形,且,又四边形是正方形,所以又因为,
所以.在梯形中,过点作作于,故四边形是正方形,所以.在中,,∴.,∴,∴∴.∵,,.平面,平面.所以平面,又因为平面,所以因为,平面,平面.∴平面,平面,∴平面平面(2)以为原点,,,所在直线为轴建立空间直角坐标系(如图)则.令,则,
因为,∴∴.因为平面,∴,取是平面的一个法向量.设平面的法向量为.则,即即.令,得,∴,19.某研究所计划利用“神七”宇宙飞船进行新产品搭载实验,计划搭载新产品、,该所要根据该产品的研制成本、产品重量、搭载实验费用、和预计产生收益来决定具体安排.通过调查,有关数据如下表:
产品A(件)产品B(件)
研制成本、搭载费用之和(万元)2030计划最大资金额300万元产品重量(千克)105最大搭载重量110千克预计收益(万元)8060
如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?参考答案:解:设搭载产品A件,产品By件,则预计收益.则作出可行域,如图;作出直线并平移.由图象得,当直线经过M点时,z能取得最大值,,解得,即.所以z=80×9+60×4=960(万元).答:应搭载产品A9件,产品B4件,可使得利润最多达到960万元.20.已知集合A={x|3<x<10},B={x|x2﹣9x+14<0},C={x|5﹣m<x<2m}.(Ⅰ)求A∩B,(?RA)∪B;(Ⅱ)若x∈C是x∈(A∩B)的充分不必要条件,求实数的取值范围.参考答案:【考点】2L:必要条件、充分条件与充要条件的判断;1H:交、并、补集的混合运算.【分析】(I)由x2﹣9x+14<0,解得2<x<7,可得B,A∩B,由集合A={x|3<x<10},可得?RA={x|x≤3,或x≥10},利用并集的运算性质可得:(?RA)∪B.(Ⅱ)由(Ⅰ)知,A∩B={x|3<x<7},由x∈C是x∈(A∩B)的充分不必要条件,可得:C?(A∩B).对C与?的关系、对m分类讨论即可得出.【解答】解:(I)由x2﹣9x+14<0,解得2<x<7,∴B={x|2<x<7}.∴A∩B={x|3<x<7},∵集合A={x|3<x<10},∴?RA={x|x≤3,或x≥10},∴(?RA)∪B={x|x<7,或x≥10}.(Ⅱ)由(Ⅰ)知,A∩B={x|3<x<7},∵x∈C是x∈(A∩B)的充分不必要条件,∴C?(A∩B).①当C=?时,满足C?(A∩B),此时5﹣m≥2m,解得;②当C≠?时,要使C?(A∩B),当且仅当,解得.综上所述,实数m的取值范围为(﹣∞,2].【点评】本题考查了集合的运算性质、分类讨论
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024机械设备的购销合同范本
- 二零二五版1209两人共同投资智能家居系统集成合同3篇
- 2024法院签的离婚协议算不算离婚
- 2024汽车制造技术与专利许可合同
- 二零二五版吊车租赁合同安全教育与培训协议3篇
- 2025年度市政设施改造出渣承包管理协议3篇
- 二零二五年度医药产品铺货与区域分销合同3篇
- 西南政法大学《无机材料合成与制备》2023-2024学年第一学期期末试卷
- 二零二五版LNG液化天然气运输船舶改造合同3篇
- 武汉铁路职业技术学院《教师职业规划与就业指导》2023-2024学年第一学期期末试卷
- 2025年中国高纯生铁行业政策、市场规模及投资前景研究报告(智研咨询发布)
- 2022-2024年浙江中考英语试题汇编:完形填空(学生版)
- 2025年广东省广州市荔湾区各街道办事处招聘90人历年高频重点提升(共500题)附带答案详解
- 中试部培训资料
- 硝化棉是天然纤维素硝化棉制造行业分析报告
- 央视网2025亚冬会营销方案
- 北师大版数学三年级下册竖式计算题100道
- 计算机网络技术全套教学课件
- 屋顶分布式光伏发电项目施工重点难点分析及应对措施
- 胃镜下超声穿刺护理配合
- 铁路危险源辨识
评论
0/150
提交评论