版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省枣庄市阴平镇中学2022年高三数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在△ABC中,内角A,B,C所对应的边分别为a,b,c,若bsinA﹣acosB=0,且b2=ac,则的值为(
) A. B. C.2 D.4参考答案:C考点:正弦定理;三角函数中的恒等变换应用;余弦定理.专题:解三角形.分析:先由条件利用正弦定理求得角B,再由余弦定理列出关于a,c的关系式,然后进行合理的变形,求得的值.解答: 解:△ABC中,由bsinA﹣a?cosB=0,利用正弦定理得sinBsinA﹣sinAcosB=0,∴tanB=,故B=.由余弦定理得b2=a2+c2﹣2ac?cosB=a2+c2﹣ac,即b2=(a+c)2﹣3ac,又b2=ac,所以4b2=(a+c)2,求得=2,故选:C.点评:本题考查正弦定理、余弦定理得应用.解题先由正弦定理求得角B,再由余弦定理列出关于a,c的关系式,然后进行合理的变形,求得的值,属于中档题.2.如图,在棱长为1的正方体中,分别为棱的中点,则点G到平面的距离为(
)A.
B.
C.
D.参考答案:答案:D3.某城市收集并整理了该市2017年1月份至10月份各月最低气温与最高气温(单位:℃)的数据,绘制了如图的折线图.已知该市的各月最低气温与最高气温具有较好的线性关系,则根据该折线图,下列结论错误的是(
)A.最低气温与最高气温为正相关
B.10月的最高气温不低于5月的最高气温
C.月温差(最高气温减最低气温)的最大值出现在1月
D.最低气温低于0℃的月份有4个参考答案:D4.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该几何体外接球的表面积为(
)A.10π
B.14π
C.16π
D.18π参考答案:B5.在的展开式中,只有第5项的二项式系数最大,则展开式中常数项是(
)(A)-7
(B)7
(C)-28
(D)28参考答案:B6.如图是函数在一个周期内的图象,则阴影
部分的面积是(
)A.
B.
C.
D.参考答案:D略7..已知双曲线,过其右焦点且垂直于实轴的直线与双曲线交于M、N两点,O是坐标原点.若,则双曲线的离心率为
(
)
A.
B.
C.
D.参考答案:C8.已知函数的导函数图象如图所示,若为锐角三角形,则一定成立的是A. B.C. D.参考答案:D9.某程序框图如图所示,其中,若输出的,则判断框内应填入的条件为()A.n<2017 B.n≤2017 C.n>2017 D.n≥2017参考答案:A【考点】程序框图.【分析】由输出的S的值,可得n的值为2016时,满足判断框内的条件,当n的值为2017时,不满足判断框内的条件,退出循环,从而得解.【解答】解:由S=++…+=(1﹣)+()+…(﹣)=1﹣==,解得:n=2016,可得n的值为2016时,满足判断框内的条件,当n的值为2017时,不满足判断框内的条件,退出循环,输出S的值.故判断框内应填入的条件为n<2017?故选:A.10.已知α,β,γ是三个不同的平面,命题“α∥β,且α⊥γβ⊥γ”是真命题.如果把α,β,γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有(
)A.0个
B.1个
C.2个
D.3个参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.己知三边长成等比数列,公比为,则其最大角的余弦值为______.参考答案:略12.(理)函数的定义域是__________.参考答案:13.执行如图所示的程序框图,若输入p=5,q=6,则输出a的值为
.参考答案:30【考点】EF:程序框图.【分析】根据得到该程序的功能是求p、q两个数的最小公倍数,由此写出程序执行的步骤,结合题意即可得答案.【解答】解:根据题中的程序框图,可得该程序按如下步骤运行①第一次循环,i=1,a=5×1=5,判断q是否整除a;②由于q=6不整除a=5,进入第二次循环,得到i=2,a=5×2=10,判断q是否整除a;③由于q=6不整除a=10,进入第三次循环,得到i=3,a=5×3=15,判断q是否整除a;④由于q=6不整除a=15,进入第四次循环,得到i=4,a=5×4=20,判断q是否整除a;⑤由于q=6不整除a=20,进入第五次循环,得到i=5,a=5×5=25,判断q是否整除a;⑥由于q=6不整除a=25,进入第六次循环,得到i=6,a=5×6=30,判断q是否整除a;⑦由于q=6整除a=30,结束循环体并输出最后的a、i值因此输出的a=30且i=6.故答案为30.14.已知圆O:x2+y2=4。(1)圆O在点A(1,)处的切线的方程是___________;(2)与直线l:x-y+10=0平行且与圆O相切的直线方程为___________。参考答案:x+y=4;x-y±2=0。15.在等比数列中,,则=__________。参考答案:-116.若函数(常数)是偶函数,且它的值域为,则该函数的解析式
.参考答案:17.已知定义在区间上的函数的图像如图所示,对于满足的任意、,给出下列结论:①
;②
;③
.其中正确结论的序号是.(把所有正确结论的序号都填上)参考答案:答案:②③三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)袋中装有大小相同的黑球和白球共个,从中任取个都是白球的概率为.现甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取…,每次摸取个球,取出的球不放回,直到其中有一人取到白球时终止.用表示取球终止时取球的总次数.(Ⅰ)求袋中原有白球的个数;(Ⅱ)求随机变量的概率分布及数学期望.参考答案:(Ⅰ)设袋中原有个白球,则从个球中任取个球都是白球的概率为…2分由题意知,化简得.解得或(舍去)……5分 故袋中原有白球的个数为……6分
(Ⅱ)由题意,的可能取值为.; ;;.
所以取球次数的概率分布列为:
……………10分
所求数学期望为…12分19.(本小题满分14分)如图,在四棱锥中,底面为矩形,平面⊥平面,,,为的中点,求证:
(1)∥平面;
(2)平面平面.
参考答案:20.已知函数,设在点N*)处的切线在轴上的截距为,数列满足:N*).(1)求数列的通项公式;(2)在数列中,仅当时,取最小值,求的取值范围;(3)令函数,数列满足:,N*),求证:对于一切的正整数,都满足:.参考答案:解:(1),则,得,即,∴数列是首项为2、公差为1的等差数列,∴,即.(2),∴函数在点N*)处的切线方程为:,令,得.,仅当时取得最小值,只需,解得,故的取值范围为.(3),故,,故,则,即.∴=.
又,故.略21.(本小题满分14分)某地政府为科技兴市,欲在如图所示的矩形的非农业用地中规划出一个高科技工业园区(如图中阴影部分),形状为直角梯形(线段和为两个底边),已知其中是以为顶点、为对称轴的抛物线段.试求该高科技工业园区的最大面积.参考答案:解:以A为原点,AB所在直线为x轴建立直角坐标系如图,则,…………(2分)由题意可设抛物线段所在抛物线的方程为,由得,,∴AF所在抛物线的方程为,…………(5分)又,∴EC所在直线的方程为,……(7分)设,则,
…………(9分)∴工业园区的面积,…………(12分)∴令得或(舍去负值),…………(13分)当变化时,和的变化情况如下表:x+0-↑极大值↓由表格可知,当时,取得最大值.…………(15分)答:该高科技工业园区的最大面积.
…………(16分)22.如图,已知抛物线的焦点为,过焦点且不平行于轴的动直线交抛物线于,两点,抛物线在、两点处的切线交于点.(Ⅰ)求证:,,三点的横坐标成等差数列;(Ⅱ)设直线交该抛物线于,两点,求四边形面积的最小值.参考答案:解:(Ⅰ)由已知,得,显然直线的斜率存在且不为0,则可设直线的方程为(),,,由消去,得,.,…2分由,得,所以,直线的斜率为,所以,直线的方程为,又,所以,直线的方程为
①………………4分同理,直线的方程为
②………………5分②-①并
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 脑出血康复期护理
- 《电池基础内容》课件
- 跨国劳务合作风险应对储备金存款合同
- 《慧聪贷款项目培训》课件
- 《工程编成培训资料》课件
- 幼儿园门卫聘请合同
- 拖拉机出租合同样本
- 《相关图及回归分析》课件
- 10日月潭 公开课一等奖创新教学设计
- 幼儿园环卫主题活动
- 二十届三中全会精神知识竞赛试题及答案
- 中国农业文化遗产与生态智慧智慧树知到期末考试答案章节答案2024年浙江农林大学
- 人教版小学数学六年级上册《百分数》单元作业设计
- 增值税预缴税款表电子版
- 油井工况分析思路和方法
- 引水工程解析
- 最新二年级看图写话10篇带格
- 《奇妙的建筑》教学设计大赛教案
- 脑干梗死患者疑难病例讨论
- 爱立信BSC硬件介绍
- 工程监理工作联系单(范本)范本
评论
0/150
提交评论