湖南省长沙市第二十五中学高一数学文摸底试卷含解析_第1页
湖南省长沙市第二十五中学高一数学文摸底试卷含解析_第2页
湖南省长沙市第二十五中学高一数学文摸底试卷含解析_第3页
湖南省长沙市第二十五中学高一数学文摸底试卷含解析_第4页
湖南省长沙市第二十五中学高一数学文摸底试卷含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省长沙市第二十五中学高一数学文摸底试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.参考答案:D2.已知,且,则等于(

)A. B. C. D.参考答案:B【分析】先根据已知条件求得的值,然后求得的值,由此求得题目所求表达式的值.【详解】依题意,由及,解得,故,故选B.【点睛】本小题主要考查两角和的正切公式,考查同角三角函数的基本关系式,考查二倍角公式,考查运算求解能力,属于基础题.3.不等式的解集是___

_参考答案:略4.下列所示的四幅图中,可表示为y=f(x)的图像的只可能是(

)参考答案:D5.若函数在定义域内单调,且用二分法探究知道在定义域内的零点同时在,内,那么下列命题中正确的是()A.函数在区间内有零点

B.函数在区间上无零点C.函数在区间或内有零点D.函数可能在区间上有多个零点参考答案:B6.已知全集U={0,1,2,3,4},集合M={0,2,3},?UN={1,2,4},则M∩N等于()A.{0,3} B.{0,2} C.{1,2,3} D.{1,2,3,4}参考答案:A【考点】交集及其运算.【分析】由全集U及N的补集确定出N,找出M与N的交集即可.【解答】解:∵全集U={0,1,2,3,4},集合M={0,2,3},?UN={1,2,4},∴N={0,3},则M∩N={0,3},故选:A.7.下列函数表示同一函数的是()

A、

B.

C、

D、参考答案:B8.化简的结果为()A.sinα?cosα B.﹣sinα?cosα C.sin2α D.cos2α参考答案:A【考点】运用诱导公式化简求值.【分析】由条件利用诱导公式进行化简所给的式子,可得结果.【解答】解:==sinαcosα,故选:A.9.已知△ABC的内角A、B、C的对边分别为a、b、c,BC边上的高为h,且,则的最大值是(

)A. B. C.4 D.6参考答案:C【分析】由余弦定理化简可得,利用三角形面积公式可得,解得,利用正弦函数的图象和性质即可得解其最大值.【详解】由余弦定理可得:,故:,而,故,所以:.故选:.【点睛】本题主要考查了余弦定理,三角形面积公式,正弦函数的图象和性质在解三角形中的综合应用,考查了转化思想,属于中档题.

10.(5分)设向量=(sinα,)的模为,则cos2α=() A. B. C. ﹣ D. ﹣参考答案:考点: 二倍角的余弦;向量的模;三角函数的化简求值.专题: 计算题;三角函数的求值.分析: 由题意求得sin2α=,再由二倍角公式可得cos2α=1﹣2sin2α,运算求得结果.解答: 由题意可得sin2α+=,∴sin2α=,∴cos2α=1﹣2sin2α=,故选:A.点评: 本题主要考查向量的模的定义、二倍角公式的应用,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分11.已知数据的平均数为,则数据的平均数为______.参考答案:19【分析】根据平均数的定义和公式进行计算即可.【详解】∵数据的平均数为,即数据,则数据的平均数,故答案为:19.【点睛】本题主要考查平均数的计算,结合平均数的公式是解决本题的关键.12.(5分)求值:=

.参考答案:考点: 诱导公式的作用.专题: 计算题.分析: 直接利用诱导公式,化简表达式为特殊角以及锐角的三角函数,然后求出值即可.解答: ===.故答案为:.点评: 本题是基础题,考查诱导公式的应用,注意特殊角的三角函数值,考查计算能力.13.若方程有实根,则实数_______;且实数_______。参考答案:

解析:

,即而,即14.设定义在区间上的函数与的图象交于点,过点作轴的垂线,垂足为,直线与函数的图象交于点,则线段的长为__________.参考答案:不妨设坐标为则的长为与的图象交于点,即解得则线段的长为15.已知是上的减函数,那么的取值范围是A.

B.

C.

D.参考答案:C略16.(4分)将对数式logba=c写成指数式为

.参考答案:bc=a考点: 指数式与对数式的互化.专题: 函数的性质及应用.分析: 利用同底指数式与对数式的互化关系即可得出.解答: 对数式logba=c化为指数式为:bc=a,故答案为:bc=a.点评: 本题考查了同底指数式与对数式的互化关系,属于基础题.17.化简的值等于__________。参考答案:

解析:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.本小题满分12分)求经过点,且满足下列条件的直线方程:(1)倾斜角的正弦为;

(2)与两坐标轴的正半轴围成的三角形面积为4。参考答案:(1)设直线倾斜角为,由,得,,----1分当时,由直线点斜式方程得,即;--3分当时,由直线点斜式方程得,即;--------5分

综上,直线方程为或。----------6分(2)设直线在轴、轴上的截距分别为,可设直线方程,由题意得,解得

----10分所以直线方程为,即。

------12分19.在△ABC中,角A,B,C所对的边分别是a,b,c,已知△ABC的周长为,且(Ⅰ)求边c的长;(Ⅱ)若△ABC的面积为,求cosC的值.参考答案:(Ⅰ)(Ⅱ)【分析】(Ⅰ)先根据正弦定理得边的关系,再根据周长求;(Ⅱ)根据三角形面积公式得的值,再根据余弦定理求结果.【详解】(Ⅰ)因为,所以由正弦定理得,因为周长为,所以(Ⅱ)因为的面积为,所以,所以【点睛】本题考查正弦定理、余弦定理以及面积公式,考查基本分析判断与求解能力,属中档题.20.(12分)已知全集U={x∈z|﹣2<x<5},集合A={﹣1,0,1,2},集合B={1,2,3,4};(Ⅰ)求A∩B,A∪B;

(Ⅱ)求(UA)∩B,A∪(UB)参考答案:(Ⅰ)∵集合A={﹣1,0,1,2},集合B={1,2,3,4},∴A∩B={1,2},A∪B={﹣1,0,1,2,3,4};.............6分(Ⅱ)∵全集U={x∈z|﹣2<x<5}={﹣1,0,1,2,3,4},集合A={﹣1,0,1,2},集合B={1,2,3,4},∴UA={3,4},UB={﹣1,0}..............................................12分则(UA)∩B={3,4},A∪(UB)={﹣1,0,1,2}.21.(本小题满分12分)已知函数.⑴求函数的定义域;⑵判断函数的奇偶性,并说明理由.参考答案:⑴令则

22.已知.(I)若函数有三个零点,求实数a的值;(II)若对任意,均有恒成立,求实数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论