基于ARCH模型对美元兑日元价格波动性的分析毕业论文_第1页
基于ARCH模型对美元兑日元价格波动性的分析毕业论文_第2页
基于ARCH模型对美元兑日元价格波动性的分析毕业论文_第3页
基于ARCH模型对美元兑日元价格波动性的分析毕业论文_第4页
基于ARCH模型对美元兑日元价格波动性的分析毕业论文_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

摘要波动性是金融经济研究的核心问题之一,现代金融理论广泛地以波动性(用手一的方差度量)代表金融产品风险,它不仅是金融产品定价的关键因素,也是人们理解和管理金融市场的主要指标。传统的金融产品定价模型往往假定波动性是不随时间变化的常数。但大量的实证研究表明,金融产品价格的变动呈现出波动的聚集性现象。所谓波动的聚集性是指价格的大幅度波动常常相继出现,即大幅波动聚集在某些时段,而小波动则聚集在另外一些时段。正因为如此,恩格尔教授于1982年创造性地引入自回归条件异方差模型ARCH(AutoregressiveConditionalHeteroscedasticity)模型来刻画金融资产的价格波动行为。可以说,ARCI模型的提出是金融计量学领域过去30年中历程碑式的学术成果。Engle(1982)提出的自回归条件异方差(arch)模型和Bollerslev(1986)在其基础上提出回归条件异方差(GARC)类模型能够很好的用来分析期货和现货价格序列中存在的异方差性特征。但是,由于不能很好地检验到好消息与坏消息的影响,坏消息比好消息可能引起更大的波动性,即杠杆效应,而 TGARC模型的建立可以很好的分析金融产品的波动是否存在该效应。本文通过以上三个模型对外汇货币对美元兑日元(USDJPY的价格波动进行分析,数据取自于Choice金融终端2013年6月10日-2017年6月10日四年间1462个交易日美元兑日元价格。关键词:美元兑日元;收益率;GARC模型;TARCH模型目录TOC\o"1-5"\h\z\o"CurrentDocument"1对美元兑日元数据进行简单分析 3\o"CurrentDocument"1.1数据的描述 3\o"CurrentDocument"1.2序列特征性的分析及平稳性的判断 4\o"CurrentDocument"2判断序列是否存在ARCH效应 6\o"CurrentDocument"2.1建立模型并对其进行估计 6\o"CurrentDocument"22对残差进行ARC嫩应的检验 6\o"CurrentDocument"3对收益率建立GARC及TARC模型 9\o"CurrentDocument"建立GARCH模型 9\o"CurrentDocument"建立TARCH模型 10\o"CurrentDocument"参考文献 121对美元兑日元数据进行简单分析1.1数据的描述本次研究的样本数据为2013年6月10日-2017年6月10日1462个交易日的美元兑日元价格,由于数据数量过大,在此选取最近 30组数据如下:表1.1美元兑日元价格30个交易日收盘价数据日期2017-05-122017-05-132017-05-142017-05-152017-05-162017-05-17价格113.88113.3325113.3325113.3325113.7555113.043日期2017-05-182017-05-192017-05-202017-05-212017-05-222017-05-23价格110.9475110.9475111.47111.238111.238111.238日期2017-05-242017-05-252017-05-262017-05-272017-05-282017-05-29价格111.2775111.822111.4815111.842111.306111.306日期2017-05-302017-05-312017-06-12017-06-22017-06-32017-06-4价格111.316110.7535110.7335111.3925110.4225110.4225日期2017-06-52017-06-62017-06-72017-06-82017-06-92017-06-10价格110.457109.4105109.8195110.049110.2715110.2715数据来源于Choice金融终端图1.2美元兑日元近五年价格直方图由美元兑日元的价格折线图与直方图可以看出,历年价格波动较大,在 14年之前价格都在低位,而从14年末开始,价格跳跃式增高,这可能主要是因为美国国内经济复苏趋势良好,就业等情况趋于好转等原因使美元汇率走强,而在16年价格又触底反弹,这可能和美国总统竞选带来的政治动荡对汇市中对美元预期的影响有关。1.2序列特征性的分析及平稳性的判断图1.3为该序列的统计特征图,有图可以看到该序列的均值为 110.206,中位数为109.83,极大值为12556,极小值为94.01,标准差为8.405434。SerityUSDJPYSerityUSDJPYSsnpItft112011&102017ObMiv&tioni14B1Mann110.2000kkliaTi1S9.3330lUlaximunn12S.56C0klinimumMC10MStdDev.B.405434Sc&wr&sa0.11A2WKunc-sis1Jarque-SefB121.14HProbability0000000为了研究该序列的平稳性,我们做该序列的相关图与偏相关图如下:图1.4美元兑日元价格的相关图与偏相关图Sample.6/1D/20136/1072017ndudedocsenrations:1451AC 尸AC 尸AGQ-StatProb110.9950.9951450.60.00020.9920.1372992.60.0003o.ggg0.02043260000040985-0.0485749Soooo509320.0067163.9000060.978-0.004S5SSa000070.9740.0049964.40000Q0.9710.024113510000g0.96S0.00412730.ocoo100904-0.00514100.0000由图1.1-图1.4我们都可以观察到美元兑日元汇率的波动性加大, 从图1.4中的相关图与偏相关图进一步可以确认,该序列为非平稳序列。2判断序列是否存在ARCH效应2.1建立模型并对其进行估计首先为了减少误差,我们对序列去自然对数,用eviews的genr指令输入y=log(usdjpy),得出的新数列为lnusdjpy序列。然后估计模型:=++图2.1模型估计结果DependentVanabk:LNUSDJPYMethod:LeastSquaresDateCi6f18-17Time:17:00Sample(adjusted):5/11^0136j'10/2017Includeciobservations:1461afteradjustmertsVariab1eCoefficientSid.Error t-StatistiGProb.C00140100.00634i 167909300933LNUSDJPY>1}0.9970350Q01775 &6152460GOODR-squared0995396Meandependent.■日i4.699600AcijusledR-squaredQ.995393S.D.dependentvarM76205S.E.ofregressionQ.005-1'73Akaikeinfocriterion-7.639500Sumsquaredresid0039037Sctiwarzcriterion-7.682263Laglikelihood5619160HannanOuinncrileL*7.686801F-statistlc3154221DurDln-'?/atsonstat1.945747Prob(F-statiStic)ooooaoaF统计量显著从而表明方程整体上是显著的;并且拟合优度为 0.995381,表明方程拟合效果比较好以得出估计的模型结果为:=0.014010+ + -模型2.1t=(1.679093)(561.6246)2.2对残差进行ARCf效应的检验接下来我们对以上模型的残差进行ARC效应检验。首先我们生成残差图如下:从图2.2可以看到,回归方程的残差表现出波动的“聚集性”,及大的波动后面常常伴随着较大的波动,较小的波动也有较小的。例如在2012-2014年的这段时间的波动较小,然而2015-2016年这段时间却表现出了一段时期内的较大波动。残差序列这种特征表明其可能具有条件异方差性,即可能存在 ARCH效应。

图2.3残差平方的相关图Date:C6/1fid7Time:14:25Sampl&-6J10/20136/10/2017Includedobservatons:1461AutocorrelationPartialCorrelationACPACQ-StatProb1]1007400747 0.005112-0.013-0016318100.01711130.037O03S10US0.01711114-0010-0.016W2910.0361111500040.00710317D.067111]60E斗0.06216.3920.012\1117ooee0.061252570.0021]1]80,072QQG530.S72O.OOO11119-0002-0.01430.S770,000111110-0021-0.021315170.000从图2.3可以看出,残差平方的自相关函数大多都超过了 95%勺置信区域,统计上显著地不为零,而且其Q统计量值也非常显著,其相应的概率值小于0.001,从而表明模型2.1的残差平方序列存在自相关。即残差序列存在 ARCH效应。对于回归方程残差的ARCH效应模型,我们为了确认结论,再对模型使用 ARCHLM检验。

图2.4ARCH的LM检验结果Het*rosKedaaticrtvTea-t:AR.CHIF-statistic:Obs*R_-squaredl电94T153S.a4764SRrotaFC2e1-^S2>Frcb.Chi-SqiuareC^l0.0073TestBqualion:t^epenaentv^riaEile:Mmthod:I. SDate-Da/TZ/izTime-i<achju5tedl):6/13^20136/10/2017Inclutledo&servallors1455oflevadjuSilrniBiitSVarlaE>l«CoerndentSTdlError t-StatislicProE)CRFSIOft^C-1>RESID^2C-2>2.40E05£32.1SE00 11.31041Q 冇 3IQ0.025-27O -O.73S3040.0000□ooim0.4®1R-s^uar«diAdljLisledR-squarsadlSEofregressioinSurri&uxjiskivd> dLODilHk^lihODdF-statisticPioId(F-stallStic)O.OOGZ&B(1ODF4IOO¥_5OE-0B吕.ISfe-OS11755094.9471S3a00722^1dependentvarSOcJep^ndonlvrtAlcs.ll<eJnTocriteria!nScfiw-dtx^rit^rionHi-inn^n-Quirtiricrif&r.Durbin-Watsonstat2.&3E-O57.53E-O5-151三4曰越-1&.14^95-1515070■1.993646输出结果由上下两部分组成。上半部分给出 LM检验结果,其中:F=4.947153> =3LM==1455*0.006768=9.84744〉 =5.99下半部分是自回归条件异方差LM检验的辅助回归式,-0.018606t=(11.316410)(3.104636)(-0.736304) =0.006768DW=2.0则由LM的检验结果也可以确定模型确实存在ARCH效应。3对收益率建立GARCH及TARCH模型3.1建立GARC模型首先我们对美元兑日元价格序列去一阶自然对数差分,得到美元兑日元收益首先我们对美元兑日元价格序列去一阶自然对数差分,得到美元兑日元收益率的序列r。由于数据量过大,以下列出最近18组数据:表3.1美元兑日元价格18个交易日收益率数据日期2017-2017-2017-2017-2017-2017-05-2405-2505-2605-2705-2805-29价格-0.003050.003299-0.004804000.000017日期2017-2017-2017-2017-2017-2017-05-3005-3106-106-206-306-4价格-0.005066-0.0001810.005934-0.00874600日期2017-2017-2017-:2017-2017-r2017-06-506-606-706-806-906-10价格0.00312-0.0095190.0037310.0020880.02020数据来源于Choice金融终端在前面我们已确认模型2.1存在ARCH进而在本部分将对收益率r做GARCH及TGARC模型,目的是检验是否存在杠杆效应,即就是利好消息对价格带来的价格波动小于坏消息带来的价格波动,波动存在非对称性。图3.1对r做GARCI模型结果Dtp vntVmiiable.HMolhodi.MLARCH Normaldi&tributionDaleD&/18/1TTimo15-4?sample(adijijstecj)-1/20136/io/zol?Includedohsarvatioms:KG1afteradjustmentsCoriv«>rq&nc«achieved3ft«ir14iteratnons-Pr&samplevanance:backcaist<口mirmEetsr二O_7>Q.ARCH=CC2>*C(3)*REGIDM^-2*C{4)*GARCHC-1JvariFirnsGd&Trir:iRintBtdiErrorz-Statistic尸robO.UOO'IU2U.QUO1240.^22743O.J1U7varlaneeiequationc3.1ME0762-3E-OB5037926ODO30RE5I口卜□0^^299CODS-511a鼻□日i□DOO□QARCHC-i>0.941292&■j.ooeadod47.O9930.00OHOR&Quaiod0.000027Moandup&nduntvar74t)E05A-djilistadR-sqtaaredi-□CKOOCI2Z呂OdependierilvarO005176匚orregresslon口UCIF75AkzalKeinfoerrterlon-7.777132Sum■口rsaid□tjay-i13senwarz亡nt®non1-0口liKaiihccidi566&Hd95Hannan-Quinnerrter.-7.771733Durbin-Watson&ta.L1.94780&在均值方程中,常数项估计值等于0.000102,非常小,但是在5%勺检验水平下是显著的。一般的,股票价格指数的日对书收益率的均值为零, 因此均值方程的参数方程是符合要求的。条件方差方程中的参数估计的 z统计量非常显著,其相应的概率值P非常小,说明这些参数估计值都是显著的。而且这些参数估计值都大于0,从而保证条件方差的非负数要求,符合GARC模型参数要求。ARCH和GARCH项的系数估计值、分别为0.046299与0.942926,+ =0.989225<1,满足GARC模型参数的约束条件,从而表明随机误差项的条件方差能够收敛到无条件方差 。由于系数之和非常接近与 1,因而前期的冲击对后面的条件方差的影响是持久的,即以前的冲击影响对未来的条件方差预测有着重要的作用。由图3.1我们可以写出模型的估计结果。收益率序列 r的均值方程:=0.000102+z统计量=(0.822743)条件方差模型: =3.14E-07+0.046299 +0.942926z统计量=(5.037926)(8.401081)(147.0993)对数似然L=5685.195,AIC=-7.777132,SC=-7.7626573.2建立TARCH模型为了探究r序列是否存在杠杆效应,我们进一步对r建立TARCH模型:图3.2对r做TGARCI模型结果D^pend^ntVzLriable.R.MultiOd.MLARCH CH.)Stud-uirin;tdl&trlb-utllonDate:o®na/i7Time:I6:isSampleadjusted)-6/11/20-136/10^017Inizluded口bservailions14-61a-Heradjilislimenl.sduhledBdmftmi39IhimLlcmmGGampi©nsneo:D^cKcsst(paramcitGrwo.7>GARQiH®C(1)+C(2>"RESID(1>*2+COrRESID(-1>*2*(RESID(1)^0)+ARCH(-1)Co^fncl^iilSid.EuTGI2.SLdtl

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论