新教材人教A版4.5.3函数模型的应用课件(40张)_第1页
新教材人教A版4.5.3函数模型的应用课件(40张)_第2页
新教材人教A版4.5.3函数模型的应用课件(40张)_第3页
新教材人教A版4.5.3函数模型的应用课件(40张)_第4页
新教材人教A版4.5.3函数模型的应用课件(40张)_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

4.5.3函数模型的应用第四章2021内容索引0102课前篇自主预习课堂篇探究学习课标阐释思维脉络1.在实际情境中,会选择合适的函数类型刻画现实问题的变化规律.(数学建模)2.能建立函数模型解决实际问题.(数学建模)3.体会如何借助函数刻画实际问题,感悟数学模型中参数的现实意义.(数学抽象)课前篇自主预习[激趣诱思]兔子是一种可爱的动物,尤其受小朋友的喜爱.但是这么可爱的兔子曾使澳大利亚人伤透了脑筋.1859年,有人从欧洲带了几只兔子来到澳大利亚,由于澳大利亚有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛羊是澳大利亚的主要牲口.这使澳大利亚人头痛不已,他们采用各种方法消灭这些兔子,直至20世纪50年代,科学家采用载液瘤病毒杀死了百分之九十的兔子,澳大利亚人才算松了一口气.兔子为什么会如此快地从几只增长到75亿只呢?原来在理想的环境中,种群数量呈指数增长;在有限制的环境中,种群数量为对数增长.[知识点拨]知识点一:常见的函数模型

(1)一次函数模型y=kx+b(k,b为常数,k≠0)(2)二次函数模型y=ax2+bx+c(a,b,c为常数,a≠0)(3)指数函数模型y=bax+c(a,b,c为常数,b≠0,a>0,且a≠1)(4)对数函数模型y=mlogax+n(m,a,n为常数,m≠0,a>0,且a≠1)(5)幂函数模型y=axn+b(a,b为常数,a≠0)(6)分段函数模型微练习某种细胞分裂时,由1个分裂成2个,2个分裂成4个……现有2个这样的细胞,分裂x次后得到细胞的个数y与x的函数关系是(

)

A.y=2x B.y=2x-1C.y=2x D.y=2x+1答案

D解析

分裂一次后由2个变成2×2=22(个),分裂两次后变成4×2=23(个),…,分裂x次后变成2x+1个.知识点二:拟合函数模型

1.应用拟合函数模型解决问题的基本进程2.解决函数实际应用题的步骤第一步:分析、联想、转化、抽象;第二步:建立函数模型,把实际应用问题转化为数学问题;第三步:解答数学问题,求得结果;第四步:把数学结果转译成具体问题的结论,做出解答.而这四步中,最为关键的是把第二步处理好.只要把函数模型建立妥当,所有的问题即可在此基础上迎刃而解.微练习某商场在销售空调旺季的4天内的利润如下表所示:时间1234利润/千元23.988.0115.99现构建一个销售这种空调的函数模型,应是下列函数中的(

)A.y=log2x

B.y=2xC.y=x2

D.y=2x答案

B课堂篇探究学习探究一指数函数模型例1一片森林原来的面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的,已知到今年为止,森林剩余面积为原来的

.(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年?(3)今后最多还能砍伐多少年?分析可建立指数函数模型求解.反思感悟

1.本题涉及平均增长率的问题,求解可用指数函数模型表示,通常可以表示为y=N·(1+p)x(其中N为原来的基础数,p为增长率,x为时间)的形式.2.在实际问题中,有关人口增长、银行利率、细胞分裂等增长问题,都常用到指数函数模型.变式训练1为落实国家“精准扶贫”政策,让市民吃上放心蔬菜,某企业于2020年在其扶贫基地投入100万元研发资金,用于蔬菜的种植及开发,并计划今后十年内在此基础上每年投入的资金比上一年增长10%.(1)写出第x年(2021年为第一年)该企业投入的资金数y(单位:万元)与x的函数关系式,并指出函数的定义域;(2)该企业从第几年开始(2021年为第一年),每年投入的资金数将超过200万元?(参考数据lg0.11≈-0.959,lg1.1≈0.041,lg11≈1.041,lg2≈0.301)解

(1)第一年投入的资金数为100(1+10%)万元,第二年投入的资金数为100(1+10%)+100(1+10%)10%=100(1+10%)2万元,第x年(2021年为第一年)该企业投入的资金数y(万元)与x的函数关系式为y=100(1+10%)x万元,其定义域为{x∈N*|x≤10}.(2)由100(1+10%)x>200,可得1.1x>2,即即企业从第8年开始(2021年为第一年),每年投入的资金数将超过200万元.探究二对数函数模型例2科学研究表明:人类对声音有不一样的感觉,这与声音的强度I(单位:瓦/平方米)有关.在实际测量时,常用L(单位:分贝)来表示声音强弱的等级,它与声音的强度I满足关系式:L=a·lg(a是常数),其中I0=1×10-12瓦/平方米.如风吹落叶沙沙声的强度I=1×10-11瓦/平方米,它的强弱等级L=10分贝.(1)已知生活中几种声音的强度如下表:求a和m的值;(2)为了不影响正常的休息和睡眠,声音的强弱等级一般不能超过50分贝,求此时声音强度I的最大值.声音来源风吹落叶沙沙声轻声耳语很嘈杂的马路强度I(瓦/平方米)1×10-111×10-101×10-3强弱等级L(分贝)10m90反思感悟

(1)基本类型:有关对数函数模型的应用题一般都会给出函数解析式,然后根据实际问题再求解.(2)求解策略:首先根据实际情况求出函数解析式中的参数,或给出具体情境,从中提炼出数据,代入解析式求值,然后根据数值回答其实际意义.变式训练2大西洋鲑鱼每年都要逆流而上,游回产地产卵.记鲑鱼的游速为v(单位:m/s),鲑鱼的耗氧量的单位数为Q,研究中发现v与log3成正比,且当Q=900时,v=1.(1)求出v关于Q的函数解析式;(2)计算一条鲑鱼的游速是1.5m/s时耗氧量的单位数;(3)一条鲑鱼要想把游速提高1m/s,其耗氧量的单位数应怎样变化?探究三拟合函数模型的应用题例3为了估计山上积雪融化后对下游灌溉的影响,在山上建立了一个观察站,测量最大积雪深度xcm与当年灌溉面积yhm2.现有连续10年的实测资料,如下表所示:年序最大积雪深度x/cm灌溉面积y/hm2115.228.6210.421.1321.240.5418.636.6526.449.8623.445.0713.529.2816.734.1924.045.81019.136.9(1)描出灌溉面积yhm2随积雪深度xcm变化的数据点(x,y);(2)建立一个能基本反映灌溉面积变化的函数模型y=f(x),并作出其图象;(3)根据所建立的函数模型,若今年最大积雪深度为25cm,则可以灌溉的土地面积是多少?解

(1)数据点分布如图1所示.(2)从图1中可以看到,数据点大致落在一条直线附近,由此,我们假设灌溉面积y

hm2和最大积雪深度x

cm满足线性函数模型y=a+bx(a,b为常数,b≠0).取其中的两组数据(10.4,21.1),(24.0,45.8),解得a≈2.4,b≈1.8.这样,我们得到一个函数模型y=2.4+1.8x.作出函数图象如图2,可以发现,这个函数模型与已知数据的拟合程度较好,这说明它能较好地反映最大积雪深度与灌溉面积的关系.(3)由(2)得当x=25时,y=2.4+1.8×25=47.4,即当最大积雪深度为25

cm时,可以灌溉土地47.4

hm2.反思感悟

对于此类实际应用问题,关键是先建立适当的函数关系式,再解决数学问题,然后验证并结合问题的实际意义作出回答,这个过程就是先拟合函数再利用函数解题.函数拟合与预测的一般步骤是:(1)能够根据原始数据、表格,描出数据点.(2)通过数据点,画出“最贴近”的直线或曲线,即拟合直线或拟合曲线.如果所有实际点都落到了拟合直线或曲线上,滴“点”不漏,那么这将是个十分完美的事情,但在实际应用中,这种情况一般是不会发生的.因此,使实际点尽可能地均匀分布在直线或曲线两侧,得出的拟合直线或拟合曲线就是“最贴近”的了.(3)根据所学函数知识,求出拟合直线或拟合曲线的函数关系式.(4)利用函数关系式,根据条件对所给问题进行预测和控制,为决策和管理提供依据.变式训练3(2021广东东莞高一期末)某篮球运动员为了测试自己的投篮最佳距离,他在每个测试点投篮30次,得到投篮命中数量y(单位:个)与测试点投篮距离x(单位:米)的部分数据如下表:为了描述球员在测试点投篮命中数量y与投篮距离x的变化关系,现有以下三种y=f(x)函数模型供选择:①f(x)=ax3+b,②f(x)=-x2+ax+b,③f(x)=abx.(1)选出你认为最符合实际的函数模型并说明理由,同时求出相应的函数解析式;(2)在第(1)问的条件下,若函数f(x)在闭区间[0,m]上的最大值为29,最小值为4,求m的取值范围.x3568y25292820解

(1)由表中数据可知,f(x)先单调递增后单调递减,∵f(x)=ax3+b与f(x)=abx都是单调函数,∴不符合题意;∵f(x)=-x2+ax+b先单调递增后单调递减,∴符合题意.(2)由(1)知f(x)=-x2+10x+4,故对称轴为x=5,∴f(x)在(-∞,5]上单调递增,在(5,+∞)上单调递减,∵f(0)=4,f(5)=29,∴m≥5,又f(x)=-x2+10x+4=4时,x=0或10,∴m≤10.综上所述,5≤m≤10,故m的取值范围是[5,10].

素养形成化学中的对数型函数问题典例

溶液酸碱度是通过pH刻画的,pH的计算公式为pH=-lg[H+],其中[H+]表示溶液中氢离子的浓度,单位是摩尔/升.(1)根据上述pH的计算公式,说明溶液酸碱度与溶液中氢离子的浓度之间的变化关系;(2)国家标准规定,饮用纯净水的pH范围应该在[5,7].食品监督部门检测到某品牌纯净水中[H+]=10-7摩尔/升,问该品牌纯净水是否符合国家标准?【规范答题】解

(1)设[H+]为x,pH为y.因为对数函数

y=lg

x

在(0,+∞)上是增函数,所以y=-lg

x在(0,+∞)上是减函数.故当溶液中氢离子的浓度增加时,溶液的pH减小;当溶液中氢离子的浓度减小时,溶液的pH增加.(2)当x=10-7时,y=-lg(10-7)=7∈[5,7].故当[H+]=10-7摩尔/升时,该品牌纯净水符合国家标准.变式训练在标准温度和大气压下,人体血液中氢离子的物质的量浓度(单位mol/L,记作[H+])和氢氧根离子的物质的量浓度(单位mol/L,记作[OH-])的乘积等于常数10-14.已知pH的定义为pH=-lg[H+],健康人体血液的pH保持在7.35~7.45,那么健康人体血液中的

可以为(参考数据:lg2≈0.30,lg3≈0.48)(

)答案

C解析

∵pH=-lg[H+]∈(7.35,7.45),且[H+]·[OH-]=10-14,又∵7.35<-lg[H+]<7.45,∴-7.45<lg[H+]<-7.35,∴-0.9<2lg[H+]+14<-0.7,

当堂检测1.一辆汽车在某段路程中的行驶路程s关于时间t变化的图象如图所示,则图象所对应的函数模型是(

)A.分段函数B.二次函数C.指数函数D.对数函数答案

A解析

由题图知,在不同的时间段内,对应的图象不同,故对应函数模型应为分段函数.2.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论