2022年中考数学模拟试题分类汇编21尺规作图2_第1页
2022年中考数学模拟试题分类汇编21尺规作图2_第2页
2022年中考数学模拟试题分类汇编21尺规作图2_第3页
2022年中考数学模拟试题分类汇编21尺规作图2_第4页
2022年中考数学模拟试题分类汇编21尺规作图2_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年中考数学试题分类汇编21尺规作图一、选择1.(2022浙江绍兴,8,4分)如图,在中,分别以点和点为圆心,大于的长为半径画弧,两弧相交于点,作直线,交于点,连接.若的周长为10,,则的周长为().1(第8题图)(第8题图)【答案】C二、解答1.(2022江苏扬州,26,10分)已知,如图,在Rt△ABC中,∠C=90º,∠BAC的角平分线AD交BC边于D。(1)以AB边上一点O为圆心,过A,D两点作⊙O(不写作法,保留作图痕迹),再判断直线BC与⊙O的位置关系,并说明理由;(2)若(1)中的⊙O与AB边的另一个交点为E,AB=6,BD=, 求线段BD、BE与劣弧DE所围成的图形面积。(结果保留根号和)【答案】(1)如图,作AD的垂直平分线交AB于点O,O为圆心,OA为半径作圆。判断结果:BC是⊙O的切线。连结OD。∵AD平分∠BAC∴∠DAC=∠DAB∵OA=OD∴∠ODA=∠DAB∴∠DAC=∠ODA∴OD∥AC∴∠ODB=∠C∵∠C=90º∴∠ODB=90º即:OD⊥BC∵OD是⊙O的半径∴BC是⊙O的切线。(2)如图,连结DE。设⊙O的半径为r,则OB=6-r,在Rt△ODB中,∠ODB=90º,∴0B2=OD2+BD2即:(6-r)2=r2+()2∴r=2∴OB=4∴∠OBD=30º,∠DOB=60º∵△ODB的面积为,扇形ODE的面积为∴阴影部分的面积为—。2.(2022山东威海,20,8分)我们学习过:在平面内,将一个图形绕一个定点沿着某一个方向转动一个角度,这样的图形运动叫做旋转,这个定点叫旋转中心.(1)如图①,△ABC≌△DEF,△DEF能否由△ABC通过一次旋转得到?若能,请用直尺和圆规画出旋转中心,若不能,试简要说明理由.图①(2)如图②,△ABC≌△MNK,△MNK能否由△ABC通过一次旋转得到?若能,请用直尺和圆规画出旋转中心,若不能,试简要说明理由.(保留必要的作图痕迹)图①图②【答案】解:(1)能,点就是所求作的旋转中心.图①图②(1)能,点就是所求作的旋转中心.3.(2022浙江杭州,18,6)四条线段a,b,c,d如图,a:b:c:d=1:2:3:4.(1)选择其中的三条线段为边作一个三角形(尺规作图,要求保留作图痕迹,不必写出作法);(2)任取三条线段,求以它们为边能作出三角形的概率.【答案】(1)只能取b,c,d三条线段,作图略(2)四条线段中任取三条共有四种等可性结果:(a,b,c),(a,b,d),(a,c,d),(b,c,d),其中能组成三角形的只有(b,c,d),所以以它们为边能作出三角形的概率是.4.(2022四川重庆,20,6分)为进一步打造“宜居重庆”,某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示.请在答卷的原图上利用尺规作出音乐喷泉M、位置.(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)【答案】5.(2022甘肃兰州,25,9分)如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C。(1)请完成如下操作:①以点O为原点、竖直和水平方向所在的直线为坐标轴、网格边长为单位长,建立平面直角坐标系;②用直尺和圆规画出该圆弧所在圆的圆心D的位置(不用写作法,保留作图痕迹),并连结AD、CD。(2)请在(1)的基础上,完成下列问:①写出点的坐标:C、D;②⊙D的半径=(结果保留根号);③若扇形ADC是一个圆锥的侧面展开图,则该圆锥的底面面积为(结果保留π);④若E(7,0),试判断直线EC与⊙D的位置关系并说明你的理由。AABCO【答案】(1)AABCOxyDE(2)①C(6,2),D(2,0)②③④相切。理由:∵CD=,CE=,DE=5∴CD2+CE2=25=DE2∴∠DCE=90°即CE⊥CD∴CE与⊙D相切。6.(2022重庆江津,23,10分)A、B两所学校在一条东西走向公路的同旁,以公路所在直线为x轴建立如图所示的平面直角坐标系,且点A的坐标是(2,2),点B的坐标是(7,3).(1)一辆汽车由西向行驶,在行驶过程中是否存在一点C,使C点到A、B两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P,使游乐场到两校距离之各最小,通过作图在图中找出建游乐场的位置,并求出它的坐标..A.A(2,2).B(7,3)yOx第23题图【答案】(1)存在满足条件的点C:作出图形,如图所示,作图略;(2)作出点A关于x轴的对称点A/(2,-2),连接A/B,与x轴的交点即为所求的点P.设A/B所在的直线的解析式为:y=kx+b,把A/(2,-2),B(7,3)分别代入得:解得:·所以:y=x-4·当y=0时,x=4,所以交点P为(4,0)·7.(2022重庆綦江,19,6分)为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P,使P到该镇所属A村、B村、C村的村委会所在地的距离都相等(A、B、C不在同一直线上,地理位置如下图),请你用尺规作图的方法确定点P的位置.要求:写出已知、求作;不写作法,保留作图痕迹.解:已知:求作:【答案】:解:已知:A、B、C三点不在同一直线上.求作:一点P,使PA=PB=PC.(或经过A、B、C三点的外接圆圆心P)正确作出任意两条线段的垂直平分线,并标出交点P8.(2022江苏南京,27,9分)如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.⑴如图②,已知Rt△ABC中,∠ACB=90°,∠ACB>∠A,CD是AB上的中线,过点B作BE⊥CD,垂足为E,试说明E是△ABC的自相似点.⑵在△ABC中,∠A<∠B<∠C.①如图③,利用尺规作出△ABC的自相似点P(写出作法并保留作图痕迹);②若△ABC的内心P是该三角形的自相似点,求该三角形三个内角的度数.BBBBCCCAAADPE①②③(第27题)【答案】解:⑴在Rt△ABC中,∠ACB=90°,CD是AB上的中线,∴,∴CD=BD.∴∠BCE=∠ABC.∵BE⊥CD,∴∠BEC=90°,∴∠BEC=∠ACB.∴△BCE∽△ABC.∴E是△ABC的自相似点.⑵①作图略.作法如下:(i)在∠ABC内,作∠CBD=∠A;(ii)在∠ACB内,作∠BCE=∠ABC;BD交CE于点P.则P为△ABC的自相似点.②连接PB、PC.∵P为△ABC的内心,∴,.∵P为△ABC的自相似点,∴△BCP∽△ABC.∴∠PBC=∠A,∠BCP=∠ABC=2∠PBC=2∠A,∠ACB=2∠BCP=4∠A.∵∠A+∠ABC+∠ACB=180°.∴∠A+2∠A+4∠A=180°.∴.∴该三角形三个内角的度数分别为、、.9.(2022重庆市潼南,19,6分)画△ABC,使其两边为已知线段a、b,夹角为.(要求:用尺规作图,写出已知、求作;保留作图痕迹;不在已知的线、角上作图;不写作法).已知:求作:【答案】已知:线段a、b、角-------------1分求作:△ABC使边BC=a,AC=b,∠C=------------2分画图(保留作图痕迹图略)--------------6分10.(2022湖北宜昌,23,10分)如图1,Rt△ABC两直角边的边长为AC=1,BC=2.(1)如图2,⊙O与Rt△ABC的边AB相切于点X,与边CB相切于点Y.请你在图2中作出并标明⊙O的圆心0;(用尺规作图,保留作图痕迹,不写作法和证明)(2)P是这个Rt△ABC上和其内部的动点,以P为圆心的⊙P与Rt△ABC的两条边相切.设⊙P的面积为S,你认为能否确定S的最大值?若能,请你求出S的最大值;若不能,请你说明不能确定S的最大值的理由.(第23图1)(第23图2)【答案】解:(1)共2分.(标出了圆心,没有作图痕迹的评1分)看见垂足为Y(X)的一

线

(或

者∠ABC的平分线)即评1分,(2)①当⊙P与Rt△ABC的边

AB和BC相切时,由角平分线的性质,动点P是∠ABC的平分线BM上的点,如图1,在∠ABC的平分线BM上任意确定点P1

(不为∠ABC的顶点),∵

OX

=BOsin∠ABM,P1Z=BP1sin∠ABM.当

BP1>BO

,P1Z>OX,即P与B的距离越大,⊙P的面积越大.这时,BM与AC的交点P是符合意的BP长度最大的点.(3分.此处没有证明和结论不影响后续评分)如图2,∵∠BPA>90°,过点P作PE⊥AB,垂足为E,则E在边AB上.∴以P为圆心、PC为半径作圆,则⊙P与边CB相切于C,与边AB相切于E,即这时的⊙P是符合意的圆.(4分.此处没有证明和结论不影响后续评分)这时⊙P的面积就是S的最大值.∵∠A=∠A,∠BCA=∠AEP=90°,∴

Rt△ABC∽Rt△APE,(5分)∴=.∵AC=1,BC=2,∴AB=

.设PC=x,则PA=AC-PC=1-x,PC=PE,∴=,∴x=.(6分)

②如图3,同理可得:当⊙P与Rt△ABC的边AB和AC相切时,设PC=y,则

=,∴y=

(7分)

③如图4,同理可得:当⊙P与Rt△ABC的边BC和AC相切时,设PF=z,则=,∴z=(8分)由①,②,③可知:∵

>2,∴

+2>+1>3,∵当分子、分母都为正数时,若分子相同,则分母越小,这个分数越大,(或者:∵x==2

-4,y=

=

,∴y-x=>0,∴y>x.∵z-y=-

=>0,∴2>

>

,(9分,没有过程直接得出酌情扣1分)∴

z>y>x.∴⊙P的面积S的最大值为π.(10分)EAEACBPZXMACBP1OACB(第23ACBAACBP(第23答图3)(第23答图4)11.(2022广东珠海,13,6分)(本满分6分)如图,在Rt△ABC中,∠C=90°,(1).求作:△ABC的一条中位线,与AB交于D点,与BC交于E点,(保留作图痕迹不写作法)(2).若AC=6,AB=10,连续CD,则DE=.CD=.【答案】解(1)如图,作BC的垂直平分线与AB交于D点,与BC交于E点,线段DE为所求.(2)3,5.12.(2022山西,22,9分)(本9分)如图,△ABC是直角三角形,∠ACB=90°,(1)实验与操作利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法).①作△ABC的外接圆,圆心为O;②以线段AC为一边,在AC的右侧作等边△ACD;③连接BD,交⊙O于点E,连接AE;(2)综合运用在你所作的图中,若AB=4,BC=2,则①AD与⊙O的位置关系是________.②线段AE的长为________________.【答案】(1)(第22题)(第22题)(2)①相切;②;13.(2022广东佛山,22,8)如图,一张纸上有线段AB.(1)请用尺规作图,作出线段的垂直平分线(保留作图痕迹,不写作法和证明)(2)若不用尺规作图,你还有其他的作法吗?请说明作法(不作图)【答案】解(1)如图(2)对折,使点A与B重合,则折痕所D的直线为线段AB的垂直平分线14.(2022广西来宾,22,8分)△ABC中,∠ABC=80°,∠BAC=40°,AB的垂直平分线分别与AC、AB交于点D、E.(1)用圆规和直尺在图中作出AB的垂直平分线DE,并连接BD.(2)证明△ABC∽△BDC【答案】(1)略(2)证明:∵DE是AB的垂直平分线∴BD=AD∴∠ABD=∠A=40°∴∠DBC=∠ABC=80°∵∠C=∠C∴△ABC∽△BDC15.(2022四川自贡,21,8分)如图,点B、C在∠SAT的两边上,且AB=AC.(1)请按下列语句用尺规画出图形(不写画法,保留作图痕迹)=1\*GB3①AN⊥BC,垂足为N;=2\*GB3②∠SBC的平分线交AN延长线于M;=3\*GB3③连接CM.(2)该图中有__________对全等三角形.【答案】(1)(2)316.(2022山东淄博,22,9分)如图1,在△ABC中,AB=AC,D是底边BC上的一点,BD>CD,将△ABC沿AD剪开,拼成如图2的四边形ABDC′.(1)四边形ABDC′具有什么特点?(2)请同学们在图3中,用尺规作一个以MN,NP为邻边的四边形MNPQ,使四边形MNPQ具有上述特点(要求:写出作法,但不要求证明).【解】(1)四边形ABDC′中,AB=DC′,∠B=∠C′(或四边形ABDC′中,一组对边相等,一组对角相等).(2)作法:①延长NP;②以点M为圆心,MN为半径画弧,交NP的延长线于点G;③以点P为圆心,MN为半径画弧,以点M为圆心,PG为半径画弧,两弧交于点Q;④连接MQ,PQ;⑤四边形MNPQ是满足条件的四边形.17.(2022山东青岛,15,4分)已知:如图,线段a和h.求作:△ABC,使AB=AC,BC=a,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论