江西省吉安市东固中学2022年高三数学文上学期期末试卷含解析_第1页
江西省吉安市东固中学2022年高三数学文上学期期末试卷含解析_第2页
江西省吉安市东固中学2022年高三数学文上学期期末试卷含解析_第3页
江西省吉安市东固中学2022年高三数学文上学期期末试卷含解析_第4页
江西省吉安市东固中学2022年高三数学文上学期期末试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省吉安市东固中学2022年高三数学文上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.执行如图所示的程序框图,则输出的k的值为(

)A.7

B.9

C.11

D.13参考答案:C2.设函数,数列是公差不为0的等差数列,,则(

)A、0

B、7

C、14

D、21

参考答案:D.

,即,根据等差数列的性质得,即,即,即,,故选D.3.在R上定义运算若对任意,不等式都成立,则实数的取值范围是

A.

B.

C.

D.参考答案:C由题意得,故不等式化为,

化简得,

故原题等价于在上恒成立,由二次函数图象,其对称轴为,讨论得

或,解得或,综上可得4.已知函数y=log2x的反函数是y=f一1(x),则函数Y=f一1(1一x)的图象是参考答案:C5.已知函数f(x)满足f(1)=,4f(x)f(y)=f(x+y)+f(x﹣y)(x,y∈R),则f(2015)=() A. B. C. ﹣ D. 0参考答案:考点: 函数的值.专题: 函数的性质及应用.分析: 由已知条件推导出函数f(x)是周期为6的周期函数,由此能求出结果.解答: 解:取x=1,y=0代入4f(x)f(y)=f(x+y)+f(x﹣y),得4f(1)f(0)=f(1)+f(1)=2f(1),解得f(0)=,则当x=1,y=1时,4f(1)f(1)=f(2)+f(0),解得f(2)=f(1)﹣f(0)=﹣;当x=2,y=1时,4f(2)f(1)=f(3)+f(1),解得f(3)=f(2)﹣f(1)=﹣;当x=3,y=1时,4f(3)f(1)=f(4)+f(2),解得f(4)=f(3)﹣f(2)=﹣;当x=4,y=1时,4f(4)f(1)=f(5)+f(1),解得f(5)=f(4)﹣f(3)=;当x=5,y=1时,4f(5)f(1)=f(6)+f(4),解得f(6)=f(5)﹣f(4)=;当x=6,y=1时,4f(6)f(1)=f(7)+f(5),解得f(7)=f(6)﹣f(5)=;…6个一循环2015届÷6=370余5f(2015)=f(5)=.故选:B.点评: 本题考查函数值的求法,是中档题,解题的关键是推导出函数f(x)是周期为6的周期函数.6.若复数,则z2=(

A.

B.

C.

D.参考答案:B7.某企业有4个分厂,新培训了一批6名技术人员,将这6名技术人员分配到各分厂,要求每个分厂至少1人,则不同的分配方案种数为()A.1080 B.480 C.1560 D.300参考答案:C【考点】计数原理的应用.【分析】先把6本不同的书分成4组,每组至少一本,再把这4组书分给4个人,利用乘法原理,即可得出结论.【解答】解:先把6本不同的书分成4组,每组至少一本.若4个组的书的数量按3、1、1、1分配,则不同的分配方案有=20种不同的方法.若4个组的书的数量分别为2、2、1、1,则不同的分配方案有?=45种不同的方法.故所有的分组方法共有20+45=65种.再把这4组书分给4个人,不同的方法有65=1560种,故选:C.【点评】本题考查组合知识的运用,考查学生分析解决问题的能力,正确分组是关键.8.已知,则的值是

)A.

B.

C.

D.参考答案:A9.(5分)(2015?南昌校级模拟)定义在R上的可导函数f(x)=x3+ax2+2bx+c,当x∈(0,1)时取得极大值,当x∈(1,2)时,取得极小值,若(1﹣t)a+b+t﹣3>0恒成立,则实数t的取值范围为()A.(2,+∞)B.[2,+∞)C.(﹣∞,)D.(﹣∞,]参考答案:B【考点】:利用导数研究函数的极值;简单线性规划的应用.【专题】:导数的综合应用;不等式的解法及应用.【分析】:据极大值点左边导数为正右边导数为负,极小值点左边导数为负右边导数为正得a,b的约束条件,据线性规划求出最值.解∵f(x)=x3+ax2+2bx+c,∴f′(x)=x2+ax+2b,∵函数f(x)在区间(0,1)内取得极大值,在区间(1,2)内取得极小值,∴f′(x)=x2+ax+2b=0在(0,1)和(1,2)内各有一个根,f′(0)>0,f′(1)<0,f′(2)>0,即,在aOb坐标系中画出其表示的区域(不包括边界),如图:若(1﹣t)a+b+t﹣3>0恒成立,可知a+b﹣3>t(a﹣1)恒成立,由可行域可知a<0,可得t>=1+它的几何意义是表示点P(1,2)与可行域内的点A连线的斜率加1,当A(x,y)位于M(﹣1,0)时,最小,最小值为1;则最小值为1+1=2,∴的取值范围[2,+∞),故选:B.【点评】:考查学生利用导数研究函数极值的能力,以及会进行简单的线性规划的能力.10.已知函数的对称中心为,记函数的

导函数为,的导函数为,则有。若函数,则可求得

A.

B.

C.

D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.设全集U={1,2,3,4,5,6},集合A={1,3,5},B={2,3},则A∩(?UB)=

.参考答案:{1,5}【考点】交、并、补集的混合运算.【专题】集合思想;综合法;集合.【分析】进行集合的补集、交集运算即可.【解答】解:?UB={1,4,5,6};∴A∩(?UB)={1,5}.故答案为:{1,5}.【点评】考查列举法表示集合,全集的概念,以及补集、交集的运算.12.设f(x)是定义在R上的奇函数,且f(2)=0,当x>0时,有恒成立,则不等式x2f(x)>0的解集为.参考答案:(﹣∞,﹣2)∪(0,2)【考点】函数的单调性与导数的关系;奇函数.【分析】首先根据商函数求导法则,把化为[]′<0;然后利用导函数的正负性,可判断函数y=在(0,+∞)内单调递减;再由f(2)=0,易得f(x)在(0,+∞)内的正负性;最后结合奇函数的图象特征,可得f(x)在(﹣∞,0)内的正负性.则x2f(x)>0?f(x)>0的解集即可求得.【解答】解:因为当x>0时,有恒成立,即[]′<0恒成立,所以在(0,+∞)内单调递减.因为f(2)=0,所以在(0,2)内恒有f(x)>0;在(2,+∞)内恒有f(x)<0.又因为f(x)是定义在R上的奇函数,所以在(﹣∞,﹣2)内恒有f(x)>0;在(﹣2,0)内恒有f(x)<0.又不等式x2f(x)>0的解集,即不等式f(x)>0的解集.故答案为:(﹣∞,﹣2)∪(0,2).【点评】本题主要考查了函数单调性与奇偶性的应用.在判断函数的单调性时,常可利用导函数来判断.属于中档题.13.曲线y=x3﹣2x在点(1,﹣1)处的切线方程是.参考答案:x﹣y﹣2=0【考点】利用导数研究曲线上某点切线方程.【分析】根据导数的几何意义求出函数在x=1处的导数,从而得到切线的斜率,再利用点斜式方程写出切线方程即可.【解答】解:y'=﹣2+3x2y'|x=﹣1=1而切点的坐标为(1,﹣1)∴曲线y=x3﹣2x在x=1的处的切线方程为x﹣y﹣2=0故答案为:x﹣y﹣2=014.函数的导函数的部分图像如图所示:图象与轴交点,与x轴正半轴的两交点为A、C,B为图象的最低点,则___

参考答案:,点P的坐标为(0,)时,得,故,从而,则;15.已知函数,若函数f(x)在区间[﹣2,a]上单调递增,则实数a的取值范围是.参考答案:[1,+∞)【考点】利用导数研究函数的单调性.【专题】分类讨论;转化思想;综合法;函数的性质及应用;导数的综合应用.【分析】f′(x)=x2+2x+a,由于函数f(x)在区间[﹣2,a]上单调递增,可得:f′(x)≥0在区间[﹣2,a]上恒成立.令g(x)=(x+1)2+a﹣1,x∈[﹣2,a].对a分类讨论即可得出.【解答】解:f′(x)=x2+2x+a,∵函数f(x)在区间[﹣2,a]上单调递增,∴f′(x)=x2+2x+a≥0在区间[﹣2,a]上恒成立.令g(x)=x2+2x+a,x∈[﹣2,a].g(x)=(x+1)2+a﹣1,①当﹣2<a<﹣1时,函数g(x)在x∈[﹣2,a]单调递减,∴必有g(a)=a2+3a≥0,解得a≤﹣3或a≥0,舍去.②当﹣1≤a时,函数g(x)在x=﹣1时取得最小值,∴必有g(x)≥g(﹣1)=1﹣2+a≥0,解得a≥﹣1,满足条件.综上可得:a≥﹣1.∴实数a的取值范围是[﹣1,+∞).故答案为:[﹣1,+∞).【点评】本题考查了利用导数研究函数的单调性极值与最值、二次函数的单调性、恒成立转化问题,考查了分类讨论方法、推理能力与计算能力,属于难题.16.曲线在点(0,1)处的切线方程为

。参考答案:略17.的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且,则

.参考答案:试题分析:由题意得,,,.考点:等比中项;余弦定理.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知a,b,c∈R,且ab+bc+ac=1.(1)求证:|a+b+c|≥;(2)若?x∈R,使得对一切实数a,b,c不等式m+|x﹣1|+|x+1|≤(a+b+c)2恒成立,求m的取值范围.参考答案:【考点】绝对值三角不等式.【分析】(1)由题意可得,只需证(a+b+c)2≥3,只需证a2+b2+c2≥1,只需证a2+b2+c2﹣(ab+bc+ca)≥0,只需证(a﹣b)2+(b﹣c)2+(c﹣a)2≥0.(2)由题意得,即可求m的取值范围.【解答】(1)证明:要证原不等式成立,只需证(a+b+c)2≥3,即证a2+b2+c2+2(ab+bc+ca)≥3,又ab+bc+ca=1.所以,只需证:a2+b2+c2≥1,即a2+b2+c2﹣1≥0,因为ab+bc+ca=1.所以,只需证:a2+b2+c2﹣(ab+bc+ca)≥0,只需证:2a2+2b2+2c2﹣2(ab+bc+ca)≥0,即(a﹣b)2+(b﹣c)2+(c﹣a)2≥0,而(a﹣b)2+(b﹣c)2+(c﹣a)2≥0显然成立,故原不等式成立;(2)解:由题意得由(1)知(a+b+c)2min=3,又|x﹣1|+|x+1|≥|(x﹣1)﹣(x+1)|=2,∴m+2≤3,m的取值范围为:m≤1.19.在△ABC中,A、B、C的对边分别为a、b、c,且

成等差数列.(Ⅰ)求B的值;(Ⅱ)求的范围.参考答案:(Ⅰ),∴,∴,∴

…………6分(Ⅱ)=,∴,∴

.………..12分略20.(本小题满分13分)已知圆:,直线:.(Ⅰ)当为何值时,直线与圆相切;(Ⅱ)当直线与圆相交于两点,且时,求直线的方程.参考答案:(Ⅰ)

(Ⅱ)21.若函数f(x)=2sinxcosx+2cos2x+m在区间[0,]的最大值为6.(1)求常数m的值;(2)求函数当x∈R时的最小值,并求出相应的x的取值集合;(3)求该函数x∈[0,π]的单调增区间.参考答案:解:(1)∵函数f(x)在区间上为增函数,在区间上为减函数,∴在区间的最大值为=6,∴解得m=3.(2)(x∈R)的最小值为﹣2+4=2.此时x的取值集合由,解得:…(3)函数设z=,函数f(x)=2sinz+4的单调增区间为由,得,设A=[0,π]B={x|},∴∴,x∈[0,π]的增区间为:.…(13分)考点:两角和与差的正弦函数;正弦函数的单调性;三角函数的最值.专题:计算题;函数思想;三角函数的图像与性质.分析:化简函数的解析式为一个角的一个三角函数的形式,(1)利用已知条件求出相位的范围,然后求解m即可.(2)求出函数的最小值,然后求解x的集合.(3)利用正弦函数的单调区间求解函数的单调区间即可.解答:解:(1)∵函数f(x)在区间上为增函数,在区间上为减函数,∴在区间的最大值为=6,∴解得m=3.(2)(x∈R)的最小值为﹣2+4=2.此时x的取值集合由,解得:…(3)函数设z=,函数f(x)=2sinz+4的单调增区间为由,得,设A=[0,π]B={x|},∴∴,x∈[0,π]的增区间为:.…(13分)点评:本题考查两角和与差的三角函数,函数的最值以及函数的单调区间的求法,考查计算能力.22.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:日需求量n14151617181920频数10201616151310以100天记录的各需求量的频率作为各需求量发生的概率.(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论