湖南省常德市太子庙镇联校高二数学文期末试题含解析_第1页
湖南省常德市太子庙镇联校高二数学文期末试题含解析_第2页
湖南省常德市太子庙镇联校高二数学文期末试题含解析_第3页
湖南省常德市太子庙镇联校高二数学文期末试题含解析_第4页
湖南省常德市太子庙镇联校高二数学文期末试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省常德市太子庙镇联校高二数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在正方体ABCD﹣A1B1C1D1中,M是棱DD1的中点,点O为底面ABCD的中心,P为棱A1B1上任一点,则异面直线OP与AM所成的角的大小为()A.30° B.60° C.90° D.120°参考答案:C【考点】异面直线及其所成的角.【分析】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线OP与AM所成的角的大小.【解答】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为2,A1P=t(0≤t≤1),A(2,0,0),M(0,0,1)O(1,1,0),P(2,t,2),=(﹣2,0,1),=(1,t﹣1,2),∴=﹣2+0+2=0,∴异面直线OP与AM所成的角的大小为90°.故选:C.2.已知{an}是等差数列,a1+a3+a5=99,a2+a4+a6=93,Sn表示{an}的前n项和,则使Sn达到最大值的n是()A.18 B.19 C.20 D.21参考答案:B【考点】等差数列的前n项和;等差数列的通项公式.【分析】由{an}是等差数列,a1+a3+a5=99,a2+a4+a6=93,知a3=33,a4=31,利用等差数列的通项公式列出方程组,解得a1=37,d=﹣2,再由等差数列的前n项和公式得到Sn=﹣n2+36n,然后利用配方法能求出Sn达到最大值时n的值.【解答】解:∵{an}是等差数列,a1+a3+a5=99,a2+a4+a6=93,∴a3=33,a4=31,∴,解得a1=37,d=﹣2,∴=﹣n2+38n=﹣(n﹣19)2+361,∴n=19时,Sn达到最大值S19=361.故选B.【点评】本题考要等差数列的通项公式和前n项和公式,是基础题.解题时要认真审题,注意配方法的合理运用.3.数列中,且,则数列前n项和是(

)。(A)

(B)

(C)

(D)参考答案:C4.用“辗转相除法”求得和的最大公约数是(

)A.

B.

C.

D.

参考答案:D5.某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,则不同的选派方案共有

种A.1320

B.288

C.1530

D.670参考答案:A.用间接法求解简单;也可直接法分3类求解6.设有一个回归方程为=3-5x,变量x增加一个单位时

()A.y平均增加3个单位

B.y平均减少5个单位C.y平均增加5个单位

D.y平均减少3个单位参考答案:B略7.设,,,则(

A.

B.

C.

D.参考答案:B略8.如图过拋物线y2=2px(p>0)的焦点F的直线依次交拋物线及准线于点A,B,C,若|BC|=2|BF|,且|AF|=3,则拋物线的方程为()A.y2=x B.y2=3x C.y2=x D.y2=9x参考答案:B【考点】抛物线的简单性质.【分析】分别过点A,B作准线的垂线,分别交准线于点E,D,设|BF|=a,根据抛物线定义可知|BD|=a,进而推断出∠BCD的值,在直角三角形中求得a,进而根据BD∥FG,利用比例线段的性质可求得p,则抛物线方程可得.【解答】解:如图分别过点A,B作准线的垂线,分别交准线于点E,D,设|BF|=a,则由已知得:|BC|=2a,由定义得:|BD|=a,故∠BCD=30°,在直角三角形ACE中,∵|AF|=3,|AC|=3+3a,∴2|AE|=|AC|∴3+3a=6,从而得a=1,∵BD∥FG,∴,求得p=,因此抛物线方程为y2=3x,故选:B【点评】本题主要考查了抛物线的标准方程.考查了学生对抛物线的定义和基本知识的综合把握.9.设函数的定义域为M,值域为N,那么 (

)A.M={x|x≠0},N={y|y≠0}B.M={x|x<0且x≠-1,或x>0,N=y|y<0,或0<y<1,或y>1C.M={x|x≠0},N={y|y∈R}D.M={x|x<-1,或-1<x<0,或x>0=,N={y|y≠0}参考答案:B10.已知(x2+)n的二项展开式的各项系数和为32,则二项展开式中x的系数为()

A.5

B.10

C.20

D.40参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.已知p:-4<x-a<4,q:(x-2)(3-x)>0,若是的充分条件,则实数a的取值范围是________.参考答案:12.在曲线处的切线方程为

。参考答案:略13.为了解学案的使用是否对学生的学习成绩有影响,随机抽取100名学生进行调查,得到2×2列联表,经计算的观测值,则可以得到结论:在犯错误的概率不超过

的前提下,认为学生的学习成绩与使用学案有关.参考数据:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828参考答案:0.01

14.已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且,设椭圆和双曲线的离心率分别为,则的最大值为_________参考答案:【分析】由题,根据椭圆和双曲线的定义可表示出,再利用余弦定理可得,最后再利用柯西不等式可的结果.【详解】由题,设椭圆为:,双曲线为:由定义可得在三角形中,由余弦定理可得:整理可得:由柯西不等式:所以,当且紧当时取等号.故答案为【点睛】本题考查了椭圆和双曲线的综合知识,熟悉性质和定义是解题的关键,还有了解余弦定理以及柯西不等式,综合性强,属于难题.15.在长为的线段上任取一点,则点与线段两端点、的距离都大于的概率是

.

参考答案:略16.设不等式组所表示的平面区域是一个三角形,则此平面区域面积的最大值

.参考答案:4;略17.在R上定义运算:,若不等式对任意的实数都成立,则实数的取值范围是

参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分13分)解关于的不等式参考答案:当时,原不等式化为;

当时,原不等式化为--------------①,解得:,,当,即时,不等式①的解为,当时,即时,不等式①的解为或;当时,即时,不等式①的解为或;当时,不等式①的解为;综上可得:当时,解集为;当时,解集为;当时,解集为或;当时,解集为;当时,解集为或;略19.(10分)已知条件

;B=,[(Ⅰ)若,求实数的值;(Ⅱ)若B是A的子集,求实数的取值范围.参考答案:解:(I);又,(II)B是A的子集,解得20.(14分)如图,在七面体ABCDMN中,四边形ABCD是边长为2的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=2,NB=1,MB与ND交于P点,点Q在AB上,且BQ=.(I)求证:QP∥平面AMD;(Ⅱ)求七面体ABCDMN的体积.参考答案:(I)证明:∵MD⊥平面ABCD,NB⊥平面ABCD,∴MD∥NB.∴,又=,∴,∴在△MAB中,QP∥AM.又QP?平面AMD,AM?平面AMD.∴QP∥平面AMD.(II)连接BD,AC交于点O,则AC⊥BD.又MD⊥平面ABCD,∴MD⊥AC,又BD∩MD=D,∴AC⊥平面MNBD.∴AO为四棱锥A﹣MNBD的高,又=.∴=2.∴V几何体ABCDMN=2VA﹣MNBD=4.考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:(I)由MD⊥平面ABCD,NB⊥平面ABCD,利用线面垂直的性质可得MD∥NB.进而得到,又已知=,可得,于是在△MAB中,QP∥AM.再利用线面平行的性质即可得出QP∥平面AMD.(II)连接BD,AC交于点O,则AC⊥BD.又MD⊥平面ABCD,利用线面垂直的性质可得MD⊥AC,再利用线面垂直的判定即可得出AC⊥平面MNBD.于是AO为四棱锥A﹣MNBD的高,进而得到VA﹣MNBD的体积.即可得出V几何体ABCDMN=2VA﹣MNBD.解答:(I)证明:∵MD⊥平面ABCD,NB⊥平面ABCD,∴MD∥NB.∴,又=,∴,∴在△MAB中,QP∥AM.又QP?平面AMD,AM?平面AMD.∴QP∥平面AMD.(II)连接BD,AC交于点O,则AC⊥BD.又MD⊥平面ABCD,∴MD⊥AC,又BD∩MD=D,∴AC⊥平面MNBD.∴AO为四棱锥A﹣MNBD的高,又=.∴=2.∴V几何体ABCDMN=2VA﹣MNBD=4.点评:熟练掌握线面平行于垂直的判定与性质、线线平行的判定与性质、四棱锥的体积等是解题的关键.21.已知四棱锥的底面为直角梯形,,

底面,且,

,是的中点。(Ⅰ)证明:面面;(Ⅱ)求与所成角的余弦值;(Ⅲ)求面与面所成二面角的大小余弦值。参考答案:证:以为坐标原点长为单位长度,如图建立空间直角坐标系,则各点坐标为.(Ⅰ)证明:因由题设知,且与是平面内的两条相交直线,由此得面.又在面上,故面⊥面.(Ⅱ)解:因故与所成角的余弦值为(Ⅲ)设平面AMC的法向量为,平面的法向量为则

而所以

令x1=1,则y1=-1,z1=2,同理故面与面所成二面角的大小余弦值为.略22.(12分)从某校高一年级1000名学生中随机抽取100名测量身高,测量后发现被抽取的学生身高全部介于155厘米到195厘米之间,将测量结果分为八组:第一组[155,160),第二组[160,165),…,第八组[190,195),得到频率分布直方图如图所示.(Ⅰ)计算第三组的样本数;并估计该校高一年级1000名学生中身高在170厘米以下的人数;(Ⅱ)估计被随机抽取的这100名学生身高的中位数、平均数.参考答案:【考点】频率分布直方图.【专题】计算题;图表型;数形结合;数形结合法;概率与统计.【分析】(Ⅰ)由频率分布直方图分析可得各数据段的频率,再由频率与频数的关系,可得频数.(Ⅱ)先求前四组的频率,进而可求中位数,计算可得各组频数,即可求解平均数.【解答】(本题满分为12分)解:(Ⅰ)由第三组的频率为:[1﹣5×(0.008+0.008+0.012+0.016+0.016+0.06)]÷2=0.2,则其样本数为:0.2×100=20,…3分由5×(0.008+0.016)+0.2=0.32,则该校高一年级1000名学生中身高在170厘米以下的人数约为:0.32×1000=320(人)…6分(Ⅱ)前四组的频率为:5×(0.008+0.016)+0.4=0.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论