



下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
无人机激光雷达风机叶片巡检方案能源紧缺问题日趋严峻,人们对可再生能源的需求量加大,作为可再生能源的“巨头”之一风能自然备受关注。风能需要风力涡轮机运作,风力发电机主要由叶轮、机舱、塔筒三部分构成,风机的叶轮负责将风能转化为机械能,由叶片、轮毂和整流罩组成。磨损会降低涡轮机结构部件捕风的效率影响其使用寿命。因此对涡轮机进行日常的维护巡检尤为重要,无人机对于风力涡轮机的检查可以识别叶片分层、核心缺陷、内部组件故障等,更详细的对关键缺陷进行定位,利用风电巡检数据管理与分析平台,实现数据上传、管理与AI缺陷分析,最后一键生成巡检报告。无人机激光雷达风机叶片巡检方案通过激光雷达与视觉融合传感构建,结合超强算力的边缘计算芯片,在无人机端实时进行航线规划、图像处理、叶片检测跟踪,利用RTK高精度定位技术以及激光雷达信息,精准控制飞机的飞行控制以及与叶片相对距离。兼容大疆双光谱相机H20T、全画幅相机P1等挂载,即插即用、快速安装作业。核心技术1.叶片与轮毂朝向实时测量技术融合可见光图像与低成本激光雷达的点云信息,感知三维场景、提高外场作业鲁棒性与作业效率。2.浅表层缺陷巡检技术可见光+热红外结合,突破肉眼边界,对浅表层隐藏的开裂、分层、褶皱等缺陷进行全面捕捉。3.叶片缺陷智能识别技术利用大量采集的叶片缺陷数据,基于深度学习算法模型进行自动缺陷筛查,结合人工确认,快速形成巡检报告。风电巡检数据管理分析平台优势支持缺陷快速识别采用AI缺陷识别算法预处理与人工复查的机制,规范报告质量、提高作业效率。缺陷定位与叶片拼接平台支持对所标记缺陷的比例尺测量,自动输出缺陷位置、大小等信息;并可将整条航线图片进行自动拼接,便于浏览与展示。数据关联分析采用可追溯的飞行航线,使得不同时间段巡检的数据具有可对照性,根据缺陷的历史数据关联,可以进一步辅助维修处理决策。功能巡检数据管理巡检数据一键上传,支持单台与多台上传风场、风机、巡检、缺陷数据一体化管理,大容量数据存储,缺陷预测性分析。人工智能处理缺陷自动分类与识别大幅叶片全景拼接,3D视角图像展示,精确计算缺陷位置与大小。自动生成报告支持AI初筛+人工复查的双重确认机制PDF报告自动生成,大幅提高后处理效
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 风险管理与评估试题及答案
- 《世界古代建筑欣赏:大二艺术史教学教案》
- 《太阳系八大行星的特点:四年级地理教学教案》
- 新员工入职流程及操作系统使用指南
- 产品分销与代理业务合作协议内容
- 《走进物理世界:高一物理实验课程教案》
- 乡村旅游农业开发方案
- 年度市场活动策划与执行报告
- 公司采购协议附件书
- 采购居间合同例文
- SG-CIM模型建设及实践
- 【零售超市促销策略研究的文献综述及理论基础4500字】
- 人教版二年级下册数学《图形的运动(解决问题)》说课稿
- 2024年中华人民共和国企业所得税年度纳税申报表(带公式)20240301更新
- 2024年江苏省扬州市中考数学真题(解析版)
- 中医养生保健知识讲座完整版
- 托福听力课件
- 泰康集团线上测评真题
- 腾讯社招测评题库
- 运动损伤的预防与处理预防和处理舞蹈运动损伤
- 物流无人机项目企业运营实施方案
评论
0/150
提交评论