免费试读

版权使用警告:本内容由圣才电子书提供,付费购买阅读后,仅供个人或单位内部学习、参考,不能作为商业用途使用

文档简介

1.北京大学光华管理学院经济学试卷分析及真题详解(1)北京大学光华管理学院经济学参考书目及真题分析一、参考书目近年来,北京大学一直不指定参考书目。根据往年的招生简章以及考题难度和考生心得,北京大学光华管理学院“经济学”考试科目“微观经济学部分”推荐使用以下参考书目:1.范里安《微观经济学:现代观点》,格致出版社2.朱善利《微观经济学》,北京大学出版社3.平新乔《微观经济学十八讲》,北京大学出版社4.尼科尔森《微观经济学:基本原理与拓展》,北京大学出版社5.范里安《微观经济学:高级教程》,经济科学出版社6.蒋殿春《高级微观经济学》,北京大学出版社7.张维迎《博弈论与信息经济学》,格致出版社需要提醒考生注意的是,上述推荐参考书目中,有些书是必读的,如范里安《微观经济学:现代观点》;有些书是选读的,如平新乔《微观经济学十八讲》和尼科尔森《微观经济学:基本原理与拓展》属于同一级别,可全看或选其一。二、真题分析通过对近年来北京大学光华管理学院“经济学”考研真题的研究分析,可以看出,呈现如下命题规律:1.难度系数非常大,偏重计算和推导查看北京大学光华管理学院“经济学”近几年考研真题,发现微观经济学部分是重点,且很有难度。需要提醒考生注意的是,考生复习过程中,特别是强化、冲刺阶段,除了要看北京大学光华管理学院“经济学”之前年份的考研真题,还要看北京大学国家发展研究院历年考研真题,很有参考价值。2.各本书的复习方法存在差异考虑到微观经济学部分知识点就那么多,推荐考生复习过程中采取题海战术,多做考题。推荐参考书目,建议考生前期多花时间学习范里安《微观经济学:现代观点》,需要反复多看几遍;平新乔《微观经济学十八讲》重点以习题为重,建议把课后习题做两到三遍。后期,建议多看看蒋殿春《高级微观经济学》和张维迎《博弈论与信息经济学》,对知识点理解很有帮助。(2)2012年北京大学光华管理学院经济学(微观经济学部分)考研真题及详解1.一个纳税人,效用函数为lnw,w为其财富,是固定值。国家按照固定税率t(0<t<1)对纳税人上报的收入征税,但此人可以少报收入,即报的收入为x(0<x<w)。同时税务机关有p(0<p<1)的概率查此人的收入。一旦查肯定能查出此人真实收入。查出之后,不仅要补齐所应缴纳的税款,同时还要承担罚金,罚金为应补交税款乘以一个大于0的固定常数θ。(1)求此纳税人选择的最优x值。同时求此纳税人选择的x与其收入的关系。(5分)(2)如果θ=0,问此时此人选择的最优x。(5分)(3)此人有没有可能选择x=0?在什么条件下此人会这样做?(5分)解:(1)由题意可知,纳税人的期望效用最大化问题为:一阶条件为:解得:当pθ-(1-p)(1-t-θt)<0且x≥0时,EU′<0,所以pθ-(1-p)(1-t-θt)<0时,x*=0。因此,此纳税人选择的最优x值为与收入成正比或者恒为0。(2)当θ=0时,EU=(1-p)ln(w-xt)+pln(w-wt),关于x递减,因此x=0。如果逃税没有成本的话,纳税人将完全逃税。(3)由第一问可知,当pθ-(1-p)(1-t-θt)≤0时,此人选择x=0。此时,税率较低(意味着被查出谎报收入所需要缴纳的罚金较少);税务机关检查的概率较低(补全税收并缴纳罚款的概率较低);罚金的乘数较低(缴纳罚款的数额较少)。2.一个垄断厂商,成本为0。面临两个市场,学生市场和非学生市场。每位学生的需求函数为q=100-2p,每位非学生的需求函数为q=100-p。学生数量为x,非学生数量为y。(1)如果统一定价,求均衡价格。每个学生的消费量是多少?每个非学生的消费者是多少?(6分)(2)如果实行三级价格歧视,求两个市场的价格。每个学生消费量是多少?每个非学生消费是多少?(7分)(3)从社会最优角度来说,统一定价和价格歧视哪个好?给出论证过程。(7分)解:记学生为S,非学生为N,则学生和非学生市场的需求函数分别为:QS=xqS=x(100-2pS),QN=yqN=y(100-pN)。反需求函数分为:pS=50-QS/(2x),pN=50-QN/y。(1)统一定价为p。当p<50时,S和N市场都可以占领:QS=xqS=x(100-2p),QN=yqN=y(100-p)。厂商的利润最大化问题为:一阶条件为:x(100-2p)+y(100-p)+p(-2x-y)=0。解得:p=50(x+y)/(2x+y),是满足p<50的条件的,此时每个学生的需求为qS=100x/(2x+y);每个非学生的需求为qN=50(3x+y)/(2x+y)。此时厂商的利润为:π1=2500(2x+y)(x+y)2/(2x+y)2=2500(x+y)2/(2x+y)。当50≤p≤100时,厂商只占领N市场:QN=yqN=y(100-p)。利润最大化问题为:一阶条件为:y(100-p)-yp=0,解得p=50。因此,QN=50y,π2=2500y。当p>100时,厂商销售量为0。最后,比较π1与π2:π1-π2=2500[(x+y)2/(2x+y)-y]=2500x2/(2x+y)≥0。因此厂商会选择定价p=50(x+y)/(2x+y),此时每个学生的需求为qS=100x/(2x+y);每个非学生的需求为qN=50(3x+y)/(2x+y)。(2)若实行三级价格歧视,则利润最大化问题为:一阶条件为:100-2pS-2pS=0,100-pN-pN=0。解得,pS=25,pN=50。进而可求得每个学生需求为qS=50,每个非学生需求为qN=50。(3)在实行统一定价策略时,学生市场的消费者总剩余为:非学生市场的消费者总剩余为:生产者总剩余为:π=2500(x+y)2/(2x+y)。所以,在实行统一定价策略时的社会总剩余为:在实行三级价格歧视时,学生市场的消费者总剩余为:1/2(50-25)·50x=625x;非学生市场的消费者总剩余为:1/2(100-50)·50y=1250y;生产者总剩余为:25·50x+50·50y=1250x+2500y。所以,在实行三级价格歧视时社会总剩余为1875x+3750y。两种情况下的社会总剩余差值为:所以,在实行统一定价策略时社会总剩余更大。3.两个寡头生产同质产品,进行两阶段博弈。生产成本为C(qi)=ciqi(i=1,2),为简单起见c1=c2=c。两厂商在第一阶段决定产能投资规模。如果产能投资规模为xi,则生产边际成本变为c-xi。但是产能投资有成本,C(xi)=kixi2/2(i=1,2),为简单起见,k1=k2=k。企业面对的市场逆需求函数为q=α-βp。设βc<α<kc。两个厂商第一阶段先进行产能博弈。到第二阶段,两厂商在观察到对方的产能投资规模后,同时进行价格博弈。(1)第二阶段博弈的均衡是什么?(5分)(2)求第一阶段博弈的两厂商的最优反应函数。(5分)(3)回到第一阶段博弈,纳什均衡是什么?(5分)(4)条件βc<α<kc在本题中的作用是什么?(5分)解:不失一般性,研究厂商i(i=1,2),另一个厂商就是厂商j=3-i。(1)假设c-xi>c-xj,即xi<xj。pi不可能小于c-xi,否则厂商i就会亏损,从而选择退出市场。所以pi=c-xi优于pi<c-xi。pi=c-xi也不劣于pi>c-xi。所以,pi=c-xi是厂商i的弱优策略。给定pi=c-xi,pj只要取比pi=c-xi小一点点的价格就可以占有全部市场,即pj=c-xi-εj,其中εj为无穷小量。在价格和产能确定后,产量也可以随之确定,qi=0,qj=α-βpj=α-β(c-xi-εj)。特别地,当c-xi=c-xj时,由上面的分析易知必有p1=p2=c-x1。综上,第二阶段博弈的均衡为:(2)若xi≤xj时,pi=c-xi,所以显然,厂商i只能选择xi=0时才能不亏损。若xi>xj,pi=c-xj-εi,因此qi=α-β(c-xj-εi),一阶条件为:解得:xi=βxj/k+(α-βc)/k+βεi/k。因此,xi对xj的反应曲线可以写成:上式已经明确列出了两个厂商分别的最优反应曲线,但到这里仍不能直接去解两条反应曲线的交点,还有一个非常重要的条件没有考虑,就是对每个厂商都应该满足πi≥0。若xi≤xj时,xi=0,所以πi=0;若xi>xj时,πi=xi[α-βc-(2k-β)(xj+εi)]/2≥0,解之得xj≤(α-βc)/(2k-β)-εi。也就是说,如果xj≥(α-βc)/(2k-β),那么厂商i不会选择xi≥(α-βc)/(2k-β)。这就意味着两条反应曲线相交之处一定不会是xi=xj=(α-βc+β)/(k-β)。所以最终的最优反应曲线为:如图1所示:图1厂商1与厂商2的最优反应曲线(3)纳什均衡为两厂商反应曲线的交点,所以,存在两个纳什均衡为或(4)这里要注意厂商i的最优反应曲线的纵截距是(α-βc)/k,由图中可以看出其纵截距必须大于(α-βc)/(2k-β),这样才能使两条反应曲线有交点,不然整个博弈都不存在纳什博弈。而且截距应当大于0。所以有:(α-βc)/k>(α-βc)/(2k-β)且(α-βc)/k>0。可得,βc<α<kc一定保证了两不等式成立,所以该条件是纳什均衡存在的充分条件。4.X、Y、Z三个人,第一阶段X和Y进行产能古诺博弈,决定产能投资规模KX和KY。第二阶段Z决定产量。但是Z决定的产量不能超过X、Y的产能投资规模之和,即Q≤KX+KY。Z的目标是X和Y的收益最大化(Z得到一个可以忽略不计的收入)。市场需求函数是D=10-P。最终的收益在X和Y之间分配取决于X和Y的产能投资规模。第一阶段X和Y的投资有成本,MCX=MCY=2。即X的净收益为:KXQ(10-Q)/(KX+KY)-2KX,类似可以得到Y的净收益。(1)求X和Y第一阶段古诺博弈的最优反应函数。(8分)(2)求最终的纳什均衡。(7分)解:(1)由于Z最大化X和Y的收益,因此等价于求Q≤KX+KY条件下Q(10-Q)的最大值。若KX+KY≥5,则Q=5时,Q(10-Q)取到最大值25;若KX+KY<5,则Q=KX+KY时,Q(10-Q)取到最大值(KX+KY)(10-KX-KY)。再回到第一阶段博弈。若KX+KY≥5且KY<5,Q=5。X的最大化净收益问题为:一阶条件为:25KY/(KX+KY)2-2=0。即:而KX+KY≥5,可得KY≥2。此时X的最大净收益为。如果2≤KY<5,有KX+KY=M<5,则X的最大净收益为π<15-3KY。所以,此时的反应函数为类似地,对Y最大化净收益可以得到即:,若KX+KY<5时,Q=KX+KY。X的最大化净收益问题为:一阶条件为:8-2KX-KY=0,或:KX=(8-KY)/2。结合KX+KY<5可得KY<2。此时,X的利润为[4-KY/2]2。如果KX+KY=M≥5,此时X的利润为π<15-3KY,小于KX+KY<5的利润。所以,此时的反应函数为KX=(8-KY)/2。同理,KY=(8-KX)/2。若KY≥5,则最大化X的利润函数可得KY≤6.25;KX=0,KY>6.25。同理KX≤6.25;KY=0,KX>6.25。所以X和Y第一阶段古诺博弈的最优反应函数如图2所示。图2X和Y的最优反应曲线综合上面两点可知,X和Y的最优反应函数分别为:和(2)如图2所示,整个博弈只有一个纳什均衡:解交点左边可得,KX=KY=25/8。所以最终的纳什均衡为X和Y的产能都为25/8。5.城市早上有6000人上班。可以选择两条路:环路和中心市区。走环路需要45分钟但是不堵车。走中心市区不堵车时20分钟,堵车时花费时间为(20+N/100)分钟,其中N为选择走市区的人数。(1)如果两条路都不收取任何费用,那么均衡时有多少人走中心市区?(5分)(2)如果政府决定通过限制走中心市区的人数来实现最小化所有人花费的总时间。政府每天随机抽取一部分人走中心市区,其他人则走环路。那么政府选择抽取的最优人数是多少?(5分)(3)如果政府打算通过征收费用来实现最小化所有人花费的总时间。对每个走中心市区的人收取相同的固定费用F,然后将收取的所有费用水平分配给所有6000个人。假设时间对于第i个人的价值为Wi=15-i/1000,其中i=1,2,…,6000。求最优的固定费用F。(4)以上三种方法哪种最优?解释其最优的原因。解:(1)当在市中心行驶与在环路行驶时间相同时,人们的选择达到均衡。即有:20+N1*/100=45,解得N1*=2500。所以,当两条路都不收取任何费用时,均衡时2500人走市中心区。(2)设政府每天抽取N2*个人走中心市区,使所有人花费的总时间最小,即:一阶条件为:-45+20+N2*/50=0。解之得,N2*=1250,即政府选择抽取1250人走中心市区时达到最优。(3)(说明)由于回忆的问题,也有人坚持认为题干中所说的“实现最小化所有人花费的总时间”应该改为“最大化所有人的总效用”。所以根据两种可能分别解出该问题。①最小化所有人花费的总时间若以最小化所有人花费的总时间为目标,则走市区的最佳人数问题与第2问是实质是一样的,结果也相同,即N2*=1250。i越小,第i个人对时间的评价就越高,他也就越愿意走市区,也可以说他愿意为走市区付出的代价越大。通过确定一个适当的“过路费F”作为可以通过中心市区的门槛,使得恰好有1250个人走中心市区,即F正好使得i=1250的人对于走中心市区和走环路无差异,即二者对其的效用应该是一样的:走中心市区对i=1250的人的花费的时间的价值为:Ucentral=[20+1250/100]W1250+F-1250F/6000。走环路对i=1250的人花费的时间的价值为:Ucircle=45W1250-1250F/6000。其中,W1250=15-1250/1000=13.75。由Ucentral=Ucircle,可解得F*=171.875。②最大化所有人的总效用“最大化所有人的总效用”等价于“最小化花费时间的总价值”。设有m个人走中心市区,他们分别是i1,i2,…,im。不妨设i1<i2<…<im,则另外(6000-m)个人走环路。(a)对于每个走中心市区的人ik,其中k=1,2,…,m,用时(20+m/100)分钟,其花费时间的价值为其中(b)对于每个走环路的人ik,其中k=m+1,m+2,…,6000,用时45分钟,其花费时间的价值为其中因此,所有人花费时间的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论