版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁省大连市瓦房店第十六高级中学高三数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若无穷等差数列{an}的首项a1<0,公差d>0,{an}的前n项和为Sn,则以下结论中一定正确的是()A.Sn单调递增 B.Sn单调递减 C.Sn有最小值 D.Sn有最大值参考答案:C【考点】等差数列的前n项和.【分析】Sn=na1+d=n2+n,利用二次函数的单调性即可判断出结论.【解答】解:Sn=na1+d=n2+n,∵>0,∴Sn有最小值.故选:C.2.右图给出了红豆生长时间(月)与枝数(枝)的散点图:那么“红豆生南国,春来发几枝.”的红豆生长时间与枝数的关系用下列哪个函数模型拟合最好?
A.指数函数:
B.对数函数:
C.幂函数:
D.二次函数:参考答案:A略3.在复平面内,复数(i是虚数单位)对应的点位于()A.第四象限 B.第三象限 C.第二象限 D.第一象限参考答案:A【考点】复数代数形式的乘除运算.【分析】由复数代数形式的乘除运算化简复数,求出在复平面内,复数对应的点的坐标,则答案可求.【解答】解:=,在复平面内,复数对应的点的坐标为:(,),位于第四象限.故选:A.4.边长为8的等边△ABC所在平面内一点O,满足,若,则的最大值为A.
B.C.
D.参考答案:C5.学校组织同学参加社会调查,某小组共有5名男同学,4名女同学。现从该小组中选出3位同学分别到A,B,C三地进行社会调查,若选出的同学中男女均有,则不同安排方法有()A.70种 B.140种 C.840种 D.420种参考答案:D试题分析:采用反面来做,首先从9名同学中任选3名参加社会调查有种,3名同学全是男生或全是女生的有种,故选出的同学中男女均有,则不同安排方法有种不同选法考点:排列与组合6.
函数y=的定义域为()A.(-4,-1)
B.(-4,1)C.(-1,1)
D.(-1,1参考答案:C7.定义在R上的偶函数,f(x)满足:对任意的x1,x2(x1≠x2),有(x1-x2)[f(x2)-f(x1)]>0,则当n时,有(
)A.f(-n)<f(n-1)<f(n+1)B.f(n-1)<f(-n)<f(n+1)C.f(n+1)<f(-n)<f(n-1)D.f(n+1)<f(n-1)<f(-n)参考答案:B.试题分析:因f(x)满足:对任意的x1,x2(x1≠x2),有(x1-x2)[f(x2)-f(x1)]>0,可得函数f(x)在单调递减,又f(x)是偶函数,可得f(x)在单调递增,当时,有,则,即,故选B.考点:函数的单调性及奇偶性.8.已知等差数列{an}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,Sn是数列{an}的前n项和,则的最小值为()A. B. C. D.3参考答案:A【考点】85:等差数列的前n项和.【分析】利用等差数列通项公式和等比数列性质,列出方程求出d=2,从而an=2n﹣1,,进而得到,由此能求出结果.【解答】解:∵a1=1,a1,a3,a13成等比数列,∴(1+2d)2=1+12d,解得d=2或d=0(舍去),∴an=2n﹣1,∴,∴,n+1=2时原式取得最小值为.故选:A.9.剪纸艺术是中国最古老的民间艺术之一,作为一种镂空艺术,它能给人以视觉上的艺术享受.在如图所示的圆形图案中有12个树叶状图形(即图中阴影部分),构成树叶状图形的圆弧均相同.若在圆内随机取一点,则此点取自阴影部分的概率是()A. B. C. D.参考答案:B【分析】利用扇形知识先求出阴影部分的面积,结合几何概型求解方法可得概率.【详解】设圆的半径为r,如图所示,12片树叶是由24个相同的弓形组成,且弓形AmB的面积为.∴所求的概率为P=.故选:B.
10.直线与曲线有且只有一个交点,则的取值范围是(
)A.
B.或
C.或
D.
参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.设向量,,若,则
.参考答案:12.若从区间(为自然对数的底数,)内随机选取两个数,则这两个数之积小于的概率为
.参考答案:13.曲线在点(1,1)处的切线方程为________参考答案:略14.已知点为等边三角形的中心,,直线过点交边于点,交边于点,则的最大值为
.参考答案:略15.已知函数f(x-1)=2x2-x,则=
。参考答案:4x+3略16.已知平面区域Ω=,直线l:和曲线C:有两个不同的交点,直线l与曲线C围城的平面区域为M,向区域Ω内随机投一点A,点A落在区域M内的概率为,若,则实数m的取值范围是__________。参考答案:略17.已知函数,在区间内任取两个实数,且,若不等式恒成立,则实数的取值范围为
。参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分10分)选修4—5:不等式选讲已知参考答案:证明:法1相加得,即证。
………………10分
法2由柯西不等式得即得
………………10分19.设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.参考答案:【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.【专题】开放型;导数的综合应用.【分析】(Ⅰ)先求导,再分类讨论,根据导数即可判断函数的单调性;(2)先求出函数的最大值,再构造函数(a)=lna+a﹣1,根据函数的单调性即可求出a的范围.【解答】解:(Ⅰ)f(x)=lnx+a(1﹣x)的定义域为(0,+∞),∴f′(x)=﹣a=,若a≤0,则f′(x)>0,∴函数f(x)在(0,+∞)上单调递增,若a>0,则当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,所以f(x)在(0,)上单调递增,在(,+∞)上单调递减,(Ⅱ),由(Ⅰ)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a>0时,f(x)在x=取得最大值,最大值为f()=﹣lna+a﹣1,∵f()>2a﹣2,∴lna+a﹣1<0,令g(a)=lna+a﹣1,∵g(a)在(0,+∞)单调递增,g(1)=0,∴当0<a<1时,g(a)<0,当a>1时,g(a)>0,∴a的取值范围为(0,1).【点评】本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题.20.(本题满分12分)已知数列满足,(1)求,,;
(2)求证:数列是等差数列,并求出的通项公式。参考答案:(1)
∴___________________________3分
(2)证明:易知,所以_____________________4分
当
=
=1
所以__________8分(3)由(2)知__________________10分
所以__________________________12分21.(本小题满分15分)在平面直角坐标系中,给定三点,点P到直线BC的距离是该点到直线AB,AC距离的等比中项。(1)求点P的轨迹方程;(2)若直线L经过的内心(设为D),且与P点的轨迹恰好有3个公共点,求L的斜率k的取值范围。参考答案:(1)直线AB、AC、BC的方程依次为。点到AB、AC、BC的距离依次为。依设,,即,化简得点P的轨迹方程为圆S: (2)由前知,点P的轨迹包含两部分圆S:
①与双曲线T: ②因为B(-1,0)和C(1,0)是适合题设条件的点,所以点B和点C在点P的轨迹上,且点P的轨迹曲线S与T的公共点只有B、C两点。的内心D也是适合题设条件的点,由,解得,且知它在圆S上。直线L经过D,且与点P的轨迹有3个公共点,所以,L的斜率存在,设L的方程为 ③(i)当k=0时,L与圆S相切,有唯一的公共点D;此时,直线平行于x轴,表明L与双曲线有不同于D的两个公共点,所以L恰好与点P的轨迹有3个公共点。......10分(ii)当时,L与圆S有两个不同的交点。这时,L与点P的轨迹恰有3个公共点只能有两种情况: 情况1:直线L经过点B或点C,此时L的斜率,直线L的方程为。代入方程②得,解得。表明直线BD与曲线T有2个交点B、E;直线CD与曲线T有2个交点C、F。故当时,L恰好与点P的轨迹有3个公共点。 情况2:直线L不经过点B和C(即),因为L与S有两个不同的交点,所以L与双曲线T有且只有一个公共点。即方程组有且只有一组实数解,消去y并化简得该方程有唯一实数解的充要条件是 ④或 ⑤解方程④得,解方程⑤得。综合得直线L的斜率k的取值范围是有限集。 22.已知函数.
(1)当时,求函数的单调区间;
(2)若对于任意都有成立,求实数的取值范围;
(3)若过点可作函数图象的三条不同切线,求实数的取值范围.参考答案:.考点:导数的综合运用试题解析:(1)当时,,得.
因为,
所以当时,,函数单调递增;
当或时,,函数单调递减.
所以函数的单调递增区间为,单调递减区间为和.
(2)方法1:由,得,
因为对于任意都有成立,
即对于任意都有成立,
即对于任意都有成立,
令,要使对任意都有成立,
必须满足或
即或
所以实数的取值范围为.
方法2:由,得,
因为对于任意都有成立,
所以问题转化为,对于任意都有.
因为,其图象开
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业社会责任调研策划合同范本
- 产品研发与创新战略性合作协议书
- 2024-2030年食品温度计行业发展分析及投资价值研究咨询报告
- 2024-2030年静态混合器行业市场现状供需分析及投资评估规划分析研究报告
- 2024-2030年防霉杀菌剂市场前景分析及投资策略与风险管理研究报告
- 2024-2030年酒类茶行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2024-2030年速溶饮料预混合行业市场现状供需分析及投资评估规划分析研究报告
- 2024-2030年迷你美容套装市场发展现状分析及行业投资战略研究报告
- 2024-2030年运动服产品入市调查研究报告
- 2024-2030年跑车行业兼并重组机会研究及决策咨询报告
- 新版东方大学俄语1-第8课
- 【课件】第二单元第三节汉族民歌课件-2021-2022学年高中音乐人音版(2019)必修音乐鉴赏
- 急性肾损伤PPT通用课件
- 高标准基本农田建设监理工作总结
- 机电安装工程技术专业培训
- 7逆合成分析法与合成路线设计
- 工程材料构配件设备报审表
- 《Monsters 怪兽》中英对照歌词
- 华东地区SMT公司信息
- 隧道弃渣及弃渣场处理方案
- 隔代教育PPT课件
评论
0/150
提交评论