




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.用反证法证明命题“已知,且,则中至少有一个大于”时,假设应为()A.且 B.或C.中至多有一个大于 D.中有一个小于或等于2.在边长为2的菱形中,,将菱形沿对角线对折,使二面角的余弦值为,则所得三棱锥的内切球的表面积为()A. B. C. D.3.函数y=12A.(0,1) B.(0,1)∪(-∞,-1) C.(-∞,1) D.(-∞,+∞)4.定积分的值为()A. B. C. D.5.三世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法.所谓割圆术,就是不断倍增圆内接正多边形的边数求出圆周率的方法.如图是刘徽利用正六边形计算圆周率时所画的示意图,现向圆中随机投掷一个点,则该点落在正六边形内的概率为()A. B. C. D.6.已知函数,若集合中含有4个元素,则实数的取值范围是A. B. C. D.7.“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件8.过双曲线的左焦点作倾斜角为的直线,若与轴的交点坐标为,则该双曲线的标准方程可能为()A. B. C. D.9.已知,,那么等于()A. B. C. D.10.已知全集,集合,,那么集合()A. B. C. D.11.若为两条异面直线外的任意一点,则()A.过点有且仅有一条直线与都平行B.过点有且仅有一条直线与都垂直C.过点有且仅有一条直线与都相交D.过点有且仅有一条直线与都异面12.是双曲线的右焦点,过点向的一条渐近线引垂线,垂足为,交另一条渐近线于点,若,则的离心率是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线的离心率为,左焦点为,点(为半焦距).是双曲线的右支上的动点,且的最小值为.则双曲线的方程为_____.14.已知向量,,且在上的投影为3,则与夹角为__________.15.由曲线与所围成的封闭图形的面积为__________.16.任取两个小于1的正数x、y,若x、y、1能作为三角形的三条边长,则它们能构成钝角三角形三条边长的概率是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知双曲线,为上的任意点.(1)求证:点到双曲线的两条渐近线的距离的乘积是一个常数;(2)设点的坐标为,求的最小值.18.(12分)将个不同的红球和个不同的白球,放入同一个袋中,现从中取出个球.(1)若取出的红球的个数不少于白球的个数,则有多少种不同的取法;(2)取出一个红球记分,取出一个白球记分,若取出个球的总分不少于分,则有多少种不同的取法;(3)若将取出的个球放入一箱子中,记“从箱子中任意取出个球,然后放回箱子中”为一次操作,如果操作三次,求恰有一次取到个红球并且恰有一次取到个白球的概率.19.(12分)在极坐标系中,已知圆经过点,且圆心为,求圆的极坐标方程.20.(12分)某届奥运会上,中国队以26金18银26铜的成绩称金牌榜第三、奖牌榜第二,某校体育爱好者在高三年级一班至六班进行了“本届奥运会中国队表现”的满意度调查结果只有“满意”和“不满意”两种,从被调查的学生中随机抽取了50人,具体的调查结果如表:
班号
一班
二班三班
四班
五班
六班
频数
5
9
11
9
7
9
满意人数
4
7
8
5
6
6(1)在高三年级全体学生中随机抽取一名学生,由以上统计数据估计该生持满意态度的概率;(2)若从一班至二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为,求随机变量的分布列及数学期望.21.(12分)假设某种人寿保险规定,投保人没活过65岁,保险公司要赔偿10万元;若投保人活过65岁,则保险公司不赔偿,但要给投保人一次性支付4万元已知购买此种人寿保险的每个投保人能活过65岁的概率都为,随机抽取4个投保人,设其中活过65岁的人数为,保险公司支出给这4人的总金额为万元(参考数据:)(1)指出X服从的分布并写出与的关系;(2)求.(结果保留3位小数)22.(10分)已知平面直角坐标系xOy,直线l过点P0,3,且倾斜角为α,以O为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为(1)求直线l的参数方程和圆C的标准方程;(2)设直线l与圆C交于M、N两点,若PM-PN=2,求直线
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据已知命题的结论的否定可确定结果.【详解】假设应为“中至少有一个大于”的否定,即“都不大于”,即“且”.故选:.【点睛】本题考查反证法的相关知识,属于基础题.2、C【解析】
作出图形,利用菱形对角线相互垂直的性质得出DN⊥AC,BN⊥AC,可得出二面角B﹣AC﹣D的平面角为∠BND,再利用余弦定理求出BD,可知三棱锥B﹣ACD为正四面体,可得出内切球的半径R,再利用球体的表面积公式可得出答案.【详解】如下图所示,易知△ABC和△ACD都是等边三角形,取AC的中点N,则DN⊥AC,BN⊥AC.所以,∠BND是二面角B﹣AC﹣D的平面角,过点B作BO⊥DN交DN于点O,可得BO⊥平面ACD.因为在△BDN中,,所以,BD1=BN1+DN1﹣1BN•DN•cos∠BND,则BD=1.故三棱锥A﹣BCD为正四面体,则其内切球半径为正四面体高的,又正四面体的高为棱长的,故.因此,三棱锥A﹣BCD的内切球的表面积为.故选:C.【点睛】本题考查几何体的内切球问题,解决本题的关键在于计算几何体的棱长确定几何体的形状,考查了二面角的定义与余弦定理,考查计算能力,属于中等题.3、A【解析】
试题分析:令f'x=x-考点:函数的单调区间.4、C【解析】试题分析:=.故选C.考点:1.微积分基本定理;2.定积分的计算.5、A【解析】设圆的半径为,则圆的面积,正六边形的面积,所以向圆中随机投掷一个点,该点落在正六边形内的概率,故选A.6、D【解析】
先求出,解方程得直线与曲线在上从左到右的五个交点的横坐标分别为,再解不等式得解.【详解】.由题意,在上有四个不同的实根.令,得或,即或.直线与曲线在上从左到右的五个交点的横坐标分别为.据题意是,解得.故选D.【点睛】本题主要考查三角恒等变换,考查三角函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.7、A【解析】
首先解一元二次不等式,再根据集合的包含关系判断充分条件、必要条件;【详解】解:因为,所以或,即因为,所以“”是“”的充分不必要条件,故选:【点睛】本题考查一元二次不等式的解法,充分条件、必要条件的判定,属于基础题.8、A【解析】
直线的方程为,令,得,得到a,b的关系,结合选项求解即可【详解】直线的方程为,令,得.因为,所以,只有选项满足条件.故选:A【点睛】本题考查直线与双曲线的位置关系以及双曲线的标准方程,考查运算求解能力.9、B【解析】
根据条件概率公式得出可计算出结果.【详解】由条件概率公式得,故选B.【点睛】本题考查条件概率的计算,利用条件概率公式进行计算是解本题的关键,属于基础题.10、C【解析】
先求得集合的补集,然后求其与集合的交集.【详解】依题意,故,故选C.【点睛】本小题主要考查集合补集的运算,考查集合交集的运算,属于基础题.11、B【解析】解:因为若点是两条异面直线外的任意一点,则过点有且仅有一条直线与都垂直,选B12、A【解析】试题分析:由题意得,因此,选A.考点:双曲线离心率【名师点睛】求双曲线的离心率(取值范围)的策略求双曲线离心率是一个热点问题.若求离心率的值,需根据条件转化为关于a,b,c的方程求解,若求离心率的取值范围,需转化为关于a,b,c的不等式求解,正确把握c2=a2+b2的应用及e>1是求解的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由,可知,而的最小值为,结合离心率为2,联立计算即可.【详解】设双曲线右焦点为,则,所以,而的最小值为,所以最小值为,又,解得,于是,故双曲线方程为.【点睛】本题考查了双曲线的方程,双曲线的定义,及双曲线的离心率,考查了计算能力,属于中档题.14、【解析】
根据投影公式,求得,进而得到,再由夹角公式得解.【详解】解:因为,,,由公式在上的投影为得,,求解得,所以,即由向量夹角公式,因为则与夹角.故答案为:.【点睛】本题考查平面向量的数量积及投影公式的运用,考查向量夹角的求法,考查逻辑推理能力及运算求解能力,属于基础题.15、【解析】分析:由题得曲线与所围成的封闭图形的面积为,再计算得解.详解:因为,所以.联立所以曲线与所围成的封闭图形的面积为,所以.故答案为:点睛:(1)本题主要考查定积分求面积和微积分基本原理,意在考查学生对这些知识的掌握水平和分析推理能力计算能力.(2))图中阴影部分的面积S=16、【解析】
求出这三个边正好是钝角三角形的三个边的等价条件,根据几何概型的概率公式,即可得到结论【详解】根据题意可得,三边可以构成三角形的条件为:.这三个边正好是钝角三角形的三个边,应满足以下条件:,对应的区域如图,由圆面积的为,直线和区域围成的三角形面积是,则x、y、1能作为三角形的三条边长,则它们能构成钝角三角形三条边长的概率.故答案为.【点睛】本题主要考查“面积型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析.(2)的最小值为【解析】
试题分析:(1)求出双曲线的渐近线方程,设点利用点到直线的距离公式,即可得到结论,写出距离的乘积,再利用点在双曲线上得出定值;(2)用点点距公式表示出|PA|,利用配方法,求得函数的最值,即可求得结论.(1)设点,由题意知双曲线的两条渐近线方程分别为和,则点到两条渐近线的距离分别为和,则,得证;(2)设点,则当时,有最小值.18、(1);(2);(3).【解析】
(1)若取出的红球的个数不少于白球的个数,则有红、红白、红白三种情况,然后利用分类计数原理可得出答案;(2)若取出的球的总分不少于分,则有红、红白、红白和红白四种情况,然后利用分类计数原理可得出答案;(3)由题意得出箱子里红球和白球都是个,并求出操作三次的情况总数,以及恰有一次取到个红球且有一次取到个白球的情况数,然后利用古典概型的概率公式可得出答案.【详解】(1)若取出的红球个数不少于白球个数,则有红、红白、红白三种情况,其中红有种取法,红白有种取法,红白有种取法.因此,共有种不同的取法;(2)若取出的个球的总分不少于分,则有红、红白、红白和红白四种情况.其中红有种取法,红白有种取法,红白有种取法,红白有种不同的取法.因此,共有种不同的取法;(3)由题意知,箱子中个球中红球有个,白球也为个,从这个球中取出个球,取出个红球只有一种情况,取出个白球也只有一种情况,取出红白有种情况,总共有种情况.若取出的个球放入一箱子里,记“从箱子中任意取出个球,然后放回箱子中去”为一次操作,如果操作三次,共有种不同情况.恰有一次取到个红球且有一次取到个白球共有种情况,因此,恰有一次取到个红球并且恰有一次取到个白球的概率为.【点睛】本题考查分类计数原理以及概率的计算,在解题时要熟练利用分类讨论思想,遵循不重不漏的原则,考查运算求解能力,属于中等题.19、【解析】
首先把极坐标转换为直角坐标,进一步求出圆的方程,再转换为极坐标方程.【详解】点转换为直角坐标为,圆心为,故圆的半径为,圆的方程为.整理得,转换为极坐标方程为,即.【点睛】本题考查的知识要点:参数方程极坐标方程和直角坐标方程之间的转换,主要考察学生的运算能力和转换能力,属于基础题型.20、(1);(2)见解析【解析】分析:(1)因为在被抽取的50人中,持满意态度的学生共16人,即可得出持满意态度的频率.
(2)ξ的所有可能取值为0,1,2,1.利用超几何分布列的概率计算公式与数学期望计算公式即可得出.详解:因为在被抽取的50人中,持满意态度的学生共16人,所以持满意态度的频率为,据此估计高三年级全体学生持满意态度的概率为.的所有可能取值为0,1,2,1.;;;.的分布列为:
0
1
2
1
P
.点睛:本题考查了超几何分布
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安徽高中教科研联盟2025年高一化学第二学期期末联考模拟试题含解析
- 2025届吉林省长春市汽车经济技术开发区第六中学化学高二下期末检测试题含解析
- 2025届江西省吉安市永丰中学高一下化学期末质量检测模拟试题含解析
- 医院通讯费用管理办法
- 机构工资薪酬管理办法
- 2025年暑假八上古诗文默写强化训练早背晚默21-36 素材
- 财政政策与市场信心-洞察及研究
- 全国现代农业发展规划与实施策略
- 智慧学校信息管理办法
- 云资源访问控制机制-洞察及研究
- 2024IPv6 技术要求 第2部分:基于 IPv6 段路由(SRv6)的 IP 承载网络
- 新标准日本语初级上册第七课课练
- 《扣件式钢管脚手架安全技术规范》JGJ130-2023
- 部编初一语文阅读理解最全答题模板与技巧+专项训练练习题
- 弟子规注音A4直接打印版
- 金融学原理重点总结彭兴韵
- 译林版三年级英语上册《全册课件》ppt
- 反恐C-TPAT程序文件整套(通用)
- ma600学员座舱图册用户培训中心
- 液压过滤器的设计和制造
- 《义务教育英语课程标准(2022年版)》自测题、综合测试题、初中英语新课标过关抽测试卷及优秀答卷(共17套附答案)
评论
0/150
提交评论