辽宁省葫芦岛协作校2022-2023学年数学高二下期末质量检测试题含解析_第1页
辽宁省葫芦岛协作校2022-2023学年数学高二下期末质量检测试题含解析_第2页
辽宁省葫芦岛协作校2022-2023学年数学高二下期末质量检测试题含解析_第3页
辽宁省葫芦岛协作校2022-2023学年数学高二下期末质量检测试题含解析_第4页
辽宁省葫芦岛协作校2022-2023学年数学高二下期末质量检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.从位男生,位女生中选派位代表参加一项活动,其中至少有两位男生,且至少有位女生的选法共有()A.种 B.种C.种 D.种2.某校教学大楼共有5层,每层均有2个楼梯,则由一楼至五楼的不同走法共有()A.24种B.52种C.10种D.7种3.已知函数,则函数的单调递增区间是()A.和 B.和C.和 D.4.复数在平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线,弦过焦点,为阿基米德三角形,则的面积的最小值为()A. B. C. D.6.函数f(x)=lnxA. B. C. D.7.在平面直角坐标系中,不等式组x+y≤0x-y≤0x2+y2≤r2(rA.-1B.-5C.13D.-8.在中,,BC边上的高等于,则()A. B. C. D.9.供电部门对某社区位居民2017年12月份人均用电情况进行统计后,按人均用电量分为,,,,五组,整理得到如下的频率分布直方图,则下列说法错误的是A.月份人均用电量人数最多的一组有人B.月份人均用电量不低于度的有人C.月份人均用电量为度D.在这位居民中任选位协助收费,选到的居民用电量在一组的概率为10.将函数的图象沿轴向右平移个单位后,得到一个偶函数的图象,则的取值不可能是()A. B. C. D.11.在某班进行的歌唱比赛中,共有5位选手参加,其中3位女生,2位男生.如果2位男生不能连着出场,且女生甲不能排在第一个,那么出场顺序的排法种数为()A.30 B.36 C.60 D.7212.函数f(x)=x+1A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.不等式的解集为__________.14.极坐标方程化成直角坐标方程是__________.15.有5条线段,其长度分别为3,4,5,7,9,现从中任取3条,则能构成三角形的概率是_____.16.如图所示,在棱长为2的正方体中,,分别是,的中点,那么异面直线和所成角的余弦值等于________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)把的参数方程化为极坐标方程:(2)求与交点的极坐标.18.(12分)已知函数,其中为常数.(1)若,求函数的极值;(2)若函数在上单调递增,求实数的取值范围.19.(12分)已知函数(1)若在区间上是单调递增函数,求实数的取值范围;(2)若在处有极值10,求的值;(3)若对任意的,有恒成立,求实数的取值范围.20.(12分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.首届中国国际进口博览会的某展馆棚顶一角的钢结构可以抽象为空间图形阳马.如图所示,在阳马中,底面.(1)若,斜梁与底面所成角为,求立柱的长(精确到);(2)证明:四面体为鳖臑;(3)若,,,为线段上一个动点,求面积的最小值.21.(12分)已知等差数列满足,.(Ⅰ)求的通项公式;(Ⅱ)设是等比数列的前项和,若,,求.22.(10分)某校从参加高二年级期末考试的学生中抽出60名学生,并统计了他们的物理成绩(成绩均为整数且满分为100分),把其中不低于50分的分成五段,,……,后画出如下部分频率分布直方图,观察图形的信息,回答下列问题:(1)求出物理成绩低于50分的学生人数;(2)估计这次考试物理学科及格率(60分以上为及格);(3)从物理成绩不及格的学生中选x人,其中恰有一位成绩不低于50分的概率为,求此时x的值;

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

由题意知本题要求至少有两位男生,且至少有1位女生,它包括:两个男生,两个女生;三个男生,一个女生两种情况,写出当选到的是两个男生,两个女生时和当选到的是三个男生,一个女生时的结果数,根据分类计数原理得到结果.解:∵至少有两位男生,且至少有1位女生包括:两个男生,两个女生;三个男生,一个女生.当选到的是两个男生,两个女生时共有C52C42=60种结果,当选到的是三个男生,一个女生时共有C53C41=40种结果,根据分类计数原理知共有60+40=100种结果,故选B.2、A【解析】因为每层均有2个楼梯,所以每层有两种不同的走法,由分步计数原理可知:从一楼至五楼共有24种不同走法.故选A.3、C【解析】

先求出函数的定义域,再求导,根据导数大于0解得x的范围,继而得到函数的单调递增区间.【详解】函数f(x)=x2-5x+2lnx的定义域是(0,+∞),令f′(x)=2x-5+==>0,解得0<x<或x>2,故函数f(x)的单调递增区间是,(2,+∞).故选C【点睛】本题考查了导数和函数的单调性的关系,易错点是注意定义域,属于基础题.4、B【解析】分析:先化简复数z,再判断其在平面内对应的点在第几象限.详解:由题得,所以复数z在平面内对应的点为,所以在平面内对应的点在第二象限.故答案为B.点睛:(1)本题主要考查复数的计算和复数的几何意义,意在考查学生对这些知识的掌握水平.(2)复数对应的点是(a,b),点(a,b)所在的象限就是复数对应的点所在的象限.复数和点(a,b)是一一对应的关系.5、B【解析】

利用导数的知识,可得,即三角形为直角三角形,利用基本不等式,可得当直线垂直轴时,面积取得最小值.【详解】设,过A,B的切线交于Q,直线的方程为:,把直线的方程代入得:,所以,则,由导数的知识得:,所以,所以,所以,因为,当时,可得的最大值为,故选B.【点睛】本题是一道与数学文化有关的试题,如果能灵活运用阿基米德三角形的结论,即当直线过抛物线的焦点,则切线与切线互相垂直,能使运算量变得更小.6、A【解析】

利用函数的奇偶性,排除选项B,D,再利用特殊点的函数值判断即可.【详解】函数为非奇非偶函数,排除选项B,D;当-1<x<0,f(x)<0,排除选项C故选:A.【点睛】本题考查函数的图象的判断,函数的奇偶性以及函数的图象的变化趋势是判断函数的图象的常用方法.7、D【解析】作出不等式组表示的平面区域,如图所示,由题意,知14πr2=π,解得r=2.因为目标函数z=x+y+1x+3=1+y-2x+3表示区域内上的点与点P(-3,2)连线的斜率加上1,由图知当区域内的点与点P的连线与圆相切时斜率最小.设切线方程为y-2=k(x+3),即8、C【解析】试题分析:设,故选C.考点:解三角形.9、C【解析】根据频率分布直方图知,12月份人均用电量人数最多的一组是[10,20),有1000×0.04×10=400人,A正确;12月份人均用电量不低于20度的频率是(0.03+0.01+0.01)×10=0.5,有1000×0.5=500人,∴B正确;12月份人均用电量为5×0.1+15×0.4+25×0.3+35×0.1+45×0.1=22,∴C错误;在这1000位居民中任选1位协助收费,用电量在[30,40)一组的频率为0.1,估计所求的概率为,∴D正确.故选C.10、C【解析】试题分析:将其向右平移个单位后得到:,若为偶函数必有:,解得:,当时,D正确,时,B正确,当时,A正确,综上,C错误.考点:1.函数的图像变换;2.函数的奇偶性.11、C【解析】

记事件位男生连着出场,事件女生甲排在第一个,利用容斥原理可知所求出场顺序的排法种数为,再利用排列组合可求出答案。【详解】记事件位男生连着出场,即将位男生捆绑,与其他位女生形成个元素,所以,事件的排法种数为,记事件女生甲排在第一个,即将甲排在第一个,其他四个任意排列,所以,事件的排法种数为,事件女生甲排在第一位,且位男生连着,那么只需考虑其他四个人,将位男生与其他个女生形成三个元素,所以,事件的排法种数为种,因此,出场顺序的排法种数种,故选:C。【点睛】本题考查排列组合综合问题,题中两个事件出现了重叠,可以利用容斥原理来等价处理,考查计算能力与分析问题的能力,属于中等题。12、A【解析】

可分类讨论,按x>0,x<-1,-1<x<0分类研究函数的性质,确定图象.【详解】x>0时,f(x)=logax是增函数,只有A、B符合,排除Cx<-1时,f(x)=-loga(-x)<0,只有A故选A.【点睛】本题考查由函数解析式选取图象,解题时可通过研究函数的性质排除一些选项,如通过函数的定义域,单调性、奇偶性、函数值的符号、函数的特殊值等排除错误的选项.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由题意可化为,根据不等式性质化简即可求解.【详解】由题意可知,即,解得,所以不等式的解集,故答案为:.【点睛】本题主要考查了含绝对值不等式的解法,一元二次不等式的解法,属于中档题.14、【解析】分析:由极坐标方程可得或,化为直角坐标方程即可.详解:由极坐标方程可得或,,即或即答案为或.点睛:本题考查极坐标与直角坐标的互化,属基础题.15、【解析】

从5条线段中任取3条共有10种情况,将能构成三角形的情况数列出,即可得概率.【详解】从5条线段中任取3条,共有种情况,其中,能构成三角形的有:3,4,5;3,5,7;3,7,9;4,5,7;4,7,9;5,7,9.共6种情况;即能构成三角形的概率是,故答案为:【点睛】本题考查了古典概型的概率公式,注意统计出满足条件的情况数,再除以总情况数即可,属于基础题.16、.【解析】以AD,DC,DD1建立空间直角坐标系,则:得直线和所成角的余弦值等于三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)与交点的极坐标为,和【解析】

(1)先把曲线化成直角坐标方程,再化简成极坐标方程;(2)联立曲线和曲线的方程解得即可.【详解】(1)曲线的直角坐标方程为:,即.的参数方程化为极坐标方程为;(2)联立可得:,与交点的极坐标为,和.【点睛】本题考查了参数方程,直角坐标方程,极坐标方程的互化,也考查了极坐标方程的联立,属于基础题.18、(1)见解析;(2).【解析】分析:求出,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间,利用函数的单调性可求出函数的极值;(2)在上单调递增等价于在上恒成立,求得导数和单调区间,讨论与极值点的关系,结合单调性,运用参数分离和解不等式可得范围.详解:(1)当时:的定义域为令,得当时,,在上单调递增;当时,,在上单调递减;当时,的极大值为,无极小值.(2)在上单调递增在上恒成立,只需在上恒成立在上恒成立令则令,则:①若即时在上恒成立在上单调递减,这与矛盾,舍去②若即时当时,,在上单调递减;当时,,在上单调递增;当时,有极小值,也是最小值,综上点睛:本题主要考查利用导数求函数的单调性以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:①分离参数恒成立(即可)或恒成立(即可);②数形结合(图象在上方即可);③讨论最值或恒成立;④讨论参数.本题是利用方法①求得的最大值.19、(1)m≥-(1)(3)m∈[-1,1]【解析】分析:(1)由在区间上是单调递增函数得,当时,恒成立,由此可求实数的取值范围;(1),由题或,判断当时,,无极值,舍去,则可求;(3)对任意的,有恒成立,即在上最大值与最小值差的绝对值小于等于1.求出原函数的导函数,分类求出函数在的最值,则答案可求;详解:(1)由在区间上是单调递增函数得,当时,恒成立,即恒成立,解得(1),由题或当时,,无极值,舍去.所以(3)由对任意的x1,x1∈[-1,1],有|f(x1)-f(x1)|≤1恒成立,得fmax(x)-fmin(x)≤1.且|f(1)-f(0)|≤1,|f(-1)-f(0)|≤1,解得m∈[-1,1],①当m=0时,f'(x)≥0,f(x)在[-1,1]上单调递增,fmax(x)-fmin(x)=|f(1)-f(-1)|≤1成立.②当m∈(0,1]时,令f'(x)<0,得x∈(-m,0),则f(x)在(-m,0)上单调递减;同理f(x)在(-1,-m),(0,1)上单调递增,f(-m)=m3+m1,f(1)=m1+m+1,下面比较这两者的大小,令h(m)=f(-m)-f(1)=m3-m-1,m∈[0,1],h'(m)=m1-1<0,则h(m)在(0,1]上为减函数,h(m)≤h(0)=-1<0,故f(-m)<f(1),又f(-1)=m-1+m1≤m1=f(0),仅当m=1时取等号.所以fmax(x)-fmin(x)=f(1)-f(-1)=1成立.③同理当m∈[-1,0)时,fmax(x)-fmin(x)=f(1)-f(-1)=1成立.综上得m∈[-1,1].点睛:本题考查利用导数研究函数的单调性,考查利用导数求函数的最值,体现了数学转化思想方法与分类讨论的数学思想方法,是难题.20、(1);(2)详见解析;(3).【解析】

(1)推导出侧棱在平面上的射影是,从而是侧棱与平面所成角,,从而求得立柱的长.(2)四边形是长方形,从而是直角三角形,由此得出,从而三角形是直角三角形,由平面,得是直角三角形,由此能证明四面体为鳖臑.(3)利用转化法求出异面直线与的距离,即可求得三角形面积的最小值.【详解】(1)因为侧棱平面,所以侧棱在底面上的射影是,所以是侧棱与平面所成角,所以,在中,,所以,即,,所以.(2)证明:由题意知四边形是长方形,所以三角形是直角三角形.由于平面,所以,所以三角形和三角形是直角三角形.因为,所以平面,所以,所以三角形是直角三角形.所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论