四川省泸州市先滩中学2022年高三数学文模拟试题含解析_第1页
四川省泸州市先滩中学2022年高三数学文模拟试题含解析_第2页
四川省泸州市先滩中学2022年高三数学文模拟试题含解析_第3页
四川省泸州市先滩中学2022年高三数学文模拟试题含解析_第4页
四川省泸州市先滩中学2022年高三数学文模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省泸州市先滩中学2022年高三数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.集合M={3,2a},N={a,b},a,b为实数,若M∩N={2},则M∪N=()A.{0,1,2}

B.{0,1,3}

C.{0,2,3}

D.{1,2,3}参考答案:D2.若点P(cosα,sinα)在直线y=﹣2x上,则的值等于()A. B. C. D.参考答案:B【考点】任意角的三角函数的定义.【分析】根据点P在直线上,得到tanα,利用万能公式和诱导公式化简得出答案.【解答】解:∵点P(cosα,sinα)在直线y=﹣2x上,∴sinα=﹣2cosα,又sin2α+cos2α=1,解得:或,∴=﹣sin2α=﹣2sinαcosα=(﹣2)××(﹣)=.故选:B.3.已知0<a<1,0<x≤y<1,且logax·logay=1,那么xy的取值范围是()[学

A.(0,a2]

B.(0,a]

C.

D.参考答案:A略4.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是A.

B.

C.

D.参考答案:C略5.函数y=cos(ωx+φ)(ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,A、B分别为最高点与最低点,且|AB|=2,则该函数图象的一条对称轴为()A.x= B.x= C.x=2 D.x=1参考答案:D【考点】HB:余弦函数的对称性.【分析】根据y=cos(ωx+φ)(ω>0,0<φ<π)为奇函数求得φ的值,根据|AB|=2,利用勾股定理求得ω的值,可得函数的解析式,从而得到函数图象的一条对称轴.【解答】解:由函数y=cos(ωx+φ)(ω>0,0<φ<π)为奇函数,可得φ=kπ+,k∈z.再结合0<φ<π,可得φ=.再根据AB2=8=4+,求得ω=,∴函数y=cos(x+)=﹣sinx,故它的一条对称轴方程为x=1,故选:D.6.如图所示的程序框图的输出结果是()A.7 B.8 C.9 D.10参考答案:D【考点】程序框图.【专题】图表型;算法和程序框图.【分析】模拟执行程序,依次写出每次循环得到的an,T的值,当T=时,满足条件T>2,退出循环,输出n的值为10.【解答】解:模拟执行程序,可得T=1,n=3a3=,T=,n=4不满足条件T>2,a4=,T=×,n=5不满足条件T>2,a5=,T=××,n=6…不满足条件T>2,a4=,T=××…×==,n=10此时,满足条件T=>2,退出循环,输出n的值为10.故选:D.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结果,属于基础题.7.把函数y=cos(2x+φ)(|φ|<)的图象向左平移个单位,得到函数y=f(x)的图象关于直线x=对称,则φ的值为()A.﹣ B.﹣ C. D.参考答案:B【考点】函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质.【分析】由条件利用函数y=Asin(ωx+φ)的图象变换规律求得f(x)的解析式,再利用余弦函数的图象的对称性,求得φ的值.【解答】解:把函数y=cos(2x+φ)(|φ|<)的图象向左平移个单位,得到函数y=f(x)=cos[2(x+)+φ]=cos(2x+φ+)的图象关于直线x=对称,则2×+φ+=kπ,求得φ=kπ﹣,k∈Z,故φ=﹣,故选:B.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,余弦函数的图象的对称性,属于基础题.8.动点在圆上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周。已知时间时,点

的坐标是,则当时,动点的纵坐标关于(单位:秒)的函数的单调递增区间是

(

)A.

B.和C.

D.参考答案:B略9.已知以下三视图中有三个同时表示某一个三棱锥,则不是该三棱锥的三视图是A.

B.

C.

D.参考答案:D略10.已知曲线向左平移个单位,得到的曲线经过点,则()A.函数的最小正周期B.函数在上单调递增C.曲线关于点对称D.曲线关于直线对称参考答案:C【分析】根据左右平移和可求得解析式;根据余弦型函数的最小正周期、单调性和对称轴、对称中心的判断方法依次判断各个选项即可.【详解】由题意知:则

,最小正周期,可知错误;当时,,此时单调递减,可知错误;当时,且,所以为的对称中心,可知正确;当时,且,所以为的对称中心,可知错误.本题正确选项:二、填空题:本大题共7小题,每小题4分,共28分11.在等差数列中,已知的值为

.参考答案:512.在等差数列中,已知,则_________参考答案:2013.设n是正整数,且满足,则n=

.参考答案:21314.在△ABC中,a,b,c分别为内角A,B,C的对边,且b2+c2﹣a2=bc,,,则b+c的取值范围是.参考答案:(,)【考点】余弦定理;平面向量数量积的运算.【分析】利用b2+c2﹣a2=bc,代入到余弦定理中求得cosA的值,进而求得A,再利用正弦定理求得b、c,利用两角和差的正弦公式化简b+c的解析式,结合正弦函数的定义域和值域,求得b+c的范围.【解答】解:△ABC中,∵b2+c2﹣a2=bc,∴cosA==,∴A=,B+C=.∵,∴∠B为钝角.∵,由正弦定理可得=1==,∴b+c=sinB+sinC=sinB+sin(﹣B)=sinB+cosB+sinB=sinB+cosB=sin(B+),∵B∈(,),∴B+∈(,),∴sin(B+)∈(,),∴b+c的范围为,故答案为:(,).【点评】本题主要考查了余弦定理的应用.注意余弦定理的变形式的应用,考查计算能力,属于中档题.15.直线为参数)与曲线为参数)的交点个数为______。参考答案:2略16.已知定义在R上的偶函数f(x)在[0,+∞)单调递增,且f(2)=0,则不等式f(x)?x>0的解集是

.参考答案:(﹣2,0)∪(2,+∞)【考点】奇偶性与单调性的综合.【专题】函数思想;综合法;函数的性质及应用.【分析】由条件可得到f(x)在(﹣∞,0)上单调递减,f(2)=f(﹣2)=0,从而解f(x)?x>0可得到,或,这样根据f(x)的单调性便可得出x的范围,即得出原不等式的解集.【解答】解:由f(x)?x>0得,或;∵f(x)为偶函数,在[0,+∞)上单调递增;∴f(x)在(﹣∞,0)单调递减,且f(2)=f(﹣2)=0;∴,或;∴x>2,或﹣2<x<0;∴不等式f(x)?x>0的解集为(﹣2,0)∪(2,+∞).故答案为:(﹣2,0)∪(2,+∞).【点评】考查偶函数的定义,偶函数在对称区间上的单调性特点,以及根据函数的单调性定义解不等式的方法.17.过抛物线的焦点作直线交抛物线于两点,若,则线段AB的长等于___________参考答案:答案:7三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数g(x)=(2﹣a)lnx,h(x)=lnx+ax2(a∈R),令f(x)=g(x)+h′(x),其中h′(x)是函数h(x)的导函数.(Ⅰ)当a=0时,求f(x)的极值;(Ⅱ)当﹣8<a<﹣2时,若存在x1,x2∈[1,3],使得|f(x1)﹣f(x2)|>(m+ln3)a﹣2ln3+ln(﹣a)恒成立,求m的取值范围.参考答案:【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【分析】(Ⅰ)把a=0代入函数f(x)的解析式,求其导函数,由导函数的零点对定义域分段,得到函数在各区间段内的单调性,从而求得函数极值;(Ⅱ)由函数的导函数可得函数的单调性,求得函数在[1,3]上的最值,再由恒成立,结合分离参数可得,构造函数,利用导数求其最值得m的范围.【解答】解:(I)依题意h′(x)=,则,x∈(0,+∞),当a=0时,,,令f′(x)=0,解得.当0<x<时,f′(x)<0,当时,f′(x)>0.∴f(x)的单调递减区间为,单调递增区间为.∴时,f(x)取得极小值,无极大值;(II)=,x∈[1,3].当﹣8<a<﹣2,即<<时,恒有f′(x)<0成立,∴f(x)在[1,3]上是单调递减.∴f(x)max=f(1)=1+2a,,∴|f(x1)﹣f(x2)|max=f(1)﹣f(3)=,∵x2∈[1,3],使得恒成立,∴>,整理得,又a<0,∴,令t=﹣a,则t∈(2,8),构造函数,∴,当F′(t)=0时,t=e2,当F′(t)>0时,2<t<e2,此时函数单调递增,当F′(t)<0时,e2<t<8,此时函数单调递减.∴,∴m的取值范围为.19.(本小题满分10分)选修4-5:不等式选讲已知使得关于的不等式成立.(I)求满足条件的实数的集合;(Ⅱ)若,且对于,不等式恒成立,试求的最小值.参考答案:(I),……………3分所以,所以的取值范围为.………………5分(Ⅱ)由(I)知,对于,不等式恒成立,只需,所以,…………………7分又因为,所以.又,所以,所以,,所以,即的最小值为6.………10分20.已知函数满足,对于任意都有,且,令.(1)求函数的表达式;(2)函数在区间上有两个零点,求的取值范围.参考答案:(1);(2).(2)①当时,可知函数在区间上单调递增,又,,故函数在区间上只有一个零点,②当时,则,而,,,(ⅰ)若,由于,且,此时,函数在区间上只有一个零点;(ⅱ)若,由于且,此时,函数在区间上有两个不同的零点,综上所述,当时,函数在区间上有两个不同的零点.考点:二次函数的图象和性质及分类整合思想等有关知识的综合运用.【易错点晴】二次函数是高中数学中的基本初等函数之一,也是解答许多数学问题的重要工具,也高考和各级各类考试的重要内容和考点.解答本题时要充分利用题设中提供的有关信息,先运用题设条件求出二次函数的解析表达式.然后再借助题设函数在区间上有两个零点,运用分类整合思想求出满足题设条件的参数的取值范围,从而使得问题获解.21.(本题满分12分)已知函数=1-2ax-a2x(a>1)(1)求函数值域(2)若[-2,1]时,函数最小值为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论