桩土动力分析中的有限元分析_第1页
桩土动力分析中的有限元分析_第2页
桩土动力分析中的有限元分析_第3页
桩土动力分析中的有限元分析_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

桩土动力分析中的有限元分析

0土—前言要真实反映土结构的动力相互作用,重要因素是要充分考虑土与结构材料接触界面的变形和动力相互作用。土与结构材料接触界面上通常存在较大的剪应力,这是两种材料的弹性模量相差很大,界面两侧材料变形不一致引起的,而且由于土体即使在小变形下也表现出明显的非线性,导致桩传给土体的能量有部分被耗散掉,反过来也是如此,这正好体现了土—结动力相互作用的非线性性质。目前,在土—结构相互作用方面,研究包括滑移和分离在内的相对运动的影响已受到一定的重视,为了模拟土-结构材料界面的性状,人们提出了一些本构模型,但主要集中于静力分析,也没有在试验室用试验方法测定本构参数1接触问题的有限元单元ANSYS软件含有丰富的接触单元模型,有点—点接触﹑点—面接触﹑面—面接触等下面简单分析ANSYS接触单元的计算过程。接触问题的关键在于接触体间的相互关系,此关系又可分为在接触前后的法向关系与切向关系。在法向关系方面上,必须实现以下两点:(1)接触力的传递。(2)两接触面间没有穿透。在切向上要考虑两接触面间的摩擦力的作用。ANSYS通过两种算法来实现此切向与法向接触关系:即罚函数法和拉格朗日乘子法。1.1接触刚度的确定通过引入人为定义的罚参数来实现接触约束条件,在反复迭代过程中,近似地实现接触面的互不侵入条件。在ANSYS软件中,罚函数是以接触刚度的形式表现出来,通过接触刚度在接触力与接触面间的穿透值(接触位移)间建立力与位移的线性关系,然后合并到整个系统的平衡方程中求解。可见接触刚度越大,则穿透就越小,理论上讲当接触刚度为无穷大时,可以实现完全的接触状态,使穿透值等于零。但是显而易见,在程序计算中,接触刚度不可能为无穷大(否则会出现病态矩阵),穿透也就不可能真实达到零,而只能是个接近于零的有限值。当采用此法来考虑土—桩接触问题,由于计算是采用迭代过程,为保证收敛性要求采用较小的接触刚度,但这样会带来较大的穿透值,产生较大的计算误差,这是罚函数法无法解决的矛盾。因此ANSYS在接触算法中还引入了拉格朗日乘子法。2.2基于anasas的接触单元拉格朗日乘子法与罚函数法不同,不是采用力与位移的关系来求接触力,而是通过把接触力作为拉格朗日乘子,与接触单元的位移场和约束共同建立拉格朗日函数,通过用梯度法﹑拟牛顿法﹑广义逆等特殊方法进行求解,从而获得位移场和接触力场。由于接触力场和位移场采用分别插值,所以此方法不要求在单元划分时考虑节点配对问题。但由于拉格朗日乘子场即接触力场的引入,增大了方程组的尺度和求解难度,给计算带来困难。正因为如此,ANSYS联合两个方法的优点又形成了罚函数+拉格朗日乘子方法,这种方法可以有更多更灵活的控制,可以更快的实现一个需要的穿透极限。但是不管采用哪种方法,接触单元的计算都是以机械接触理论为基础,不考虑接触过程中的能量损耗。由于桩—土动力相互作用过程,土体表现明显的非线性,会消耗桩—土接触过程的能量,所以如采用ANSYS软件中的接触单元分析桩—土接触问题会带来很大的误差。目前很多岩土研究者都比较青睐于用ANSYS软件中的接触单元来考虑土-结构的接触分析,本文认为ANSYS中的接触单元用于土—结构相互作用问题的适用性有待于进一步验证,目前可以有条件地使用。2单元刚度矩阵Goodman单元基本原理,Goodman等(1968)在线弹性假定下,界面单元的应力与相对位移之间的关系可用下式表示:式中τ相应的单元刚度矩阵可以表示为其中:式中t为单元在第三维方向的尺寸;L为单元的长度。目前有关描述界面应力和相对位移之间的关系的界面本构关系的研究还很不成熟,对界面的性状尚难作细致的模拟3修改的软件设计桩—土动力相互作用过程中,一般认为能量损耗主要是由于桩周土体产生非线性变化而造成的。根据Winkler地基梁模型,能量损耗可以利用阻尼来模拟式中有了Goodman单元的刚度矩阵和阻尼矩阵后,即可将其组合到系统整体刚度矩阵和阻尼矩阵中去,本文有限元的计算结果是利用Winlison-θ法求解得到,此方法很常用,在本文中毋需介绍。4子单元的确定为了验证Goodman接触单元加上阻尼后对计算结果的影响。本文假设某一桩—土—结构系统(见图3),四层混凝土框架结构建于一软弱场地上,结构层高均为3m,假设上部结构处于弹性阶段工作,钢筋混凝土的弹性模量取为31×106kN/m(1)土体计算参数。以假设的基岩上的4层土作为计算模型,计算参数见表1。(2)程序简介。本文编制了土—桩—结构二维有限元计算程序,桩和结构被简化为梁单元梁单元采用四结点八自由度模型(含两个虚自由度),梁单元两端分别有三自由度(两个平动自由度和一转动自由度)和一虚自由度,虚自由度的设置是为了利于与土单元的四节点八自由度统一,虚自由度上没有力和位移出现。土体划分为四边形单元,土单元与桩单元之间加上修改的Goodman接触单元,人工边界采用粘弹性边界,其弹簧刚度和阻尼的计算参考文献(3)输入的地震动时程:Taft地震,见图4,震动持时为60s,峰值加速度为0.15g,为更好地分析Goodman接触单元中阻尼项对上部结构的影响,本文采用了对同一地震动,通过调整加速度峰值的方法,得到不同强度的地震动输入,除了原有的0.15g,加速度峰值分别调整到0.2g和0.3g两种工况,分别进行计算,研究了Goodman单元在考虑阻尼的情况下,对上部结构地震反应的影响。表2反应了土—桩—结构系统在同一地震不同的加速度峰值作用下,接触单元考虑与不考虑阻尼的上部结构顶层处最大弯矩﹑最大剪力﹑最大水平位移的比较,得出三种工况中上部结构在接触单元有阻尼时比无阻尼时最大反应都表现减少的趋势。上部结构顶层柱的最大弯矩、最大剪力、最大水平位移﹑峰值加速度在加速度峰值0.15g的情况下,有阻尼时,其值比无阻尼时分别减小7%﹑4.3%、11.6%﹑9%,在加速度峰值0.2g的情况下,有阻尼时其值比无阻尼时分别减少了8.4%﹑7.1%﹑12.78%﹑11.4%,在加速度峰值0.3g的情况下,有阻尼时,其值比无阻尼时分别减小10%﹑12.3%﹑15.13%﹑12.5%。而且不仅结构顶层的地震反应出现有阻尼时比无阻尼时减少,结构其它层的地震反应也相应出现减少。从分析比较中还看出,在上调输入加速度的幅值,使用考虑阻尼的Goodman接触单元后,上部结构的最大地震反应减小的幅度更大一些。这与理论上的解释也是相符的,由于输入地震动强度的增加,桩—土间的动力相互作用更加明显,土的非线性发展更加充分,塑性耗能更加强烈,表现在土给桩和上部结构的能量要减小更多,导致上部结构最大地震反应减小的幅度也相应增大。但笔者在计算中发现,当考虑接触单元的阻尼项时,并不是结构各层的地震反应总是随地震加速度峰值的增加而减少,由于桩土之间动力相互作用的问题是相当复杂,当地震加速度峰值增加到一定程度时,土—桩—结构系统都处于严重的非线性状态,本文的一些假定不再适用,进一步的分析,将另文报道。不过在中小地震作用下,本文提出的Goodman接触单元的修改模型,能够反应桩土之间动力相互作用过程中的能量损耗。5关于桩—结论与建议本文研究分析了桩—土—结构体系动力相互作用中的接触问题,指出了采用ANSYS软件中接触单元分析桩—土接触问题存在的缺陷,并在工程研究中常用的Goodman接触单元的基础上,提出一种不仅能够考虑桩—土动力相互作用中力的传递过程,又能考虑桩—土动力相互作用过程中的能量损耗的改进的Goodman接触单元模型。通过分析比较得出以下结论:通过对ANSYS软件中接触单元的工作机理进行分析比较,发现ANSYS软件中的接触单元的计算只反应了接触单元的力和位移的关系,不考虑接触单元的能量损耗,由于在桩—土相互作用问题中,土体会表现明显的非线性并消耗一定的能量。所以认为这种只考虑力和位移的相互关系的机械接触理论的接触单元,运用于桩—土接触界面分析中会带来一定的误差。本文还分析了工程接触问题中常用的Goodman接触单元工作机理,同样存在着只考虑接触单元与相邻单元的力的传递,不考虑动力相互作用中能量的损耗问题,所以用于分析土—结构动力接触问题时,需要进一步修正。本文在Goodman单元的基础上,保留了此单元切向刚度和法向刚度的计算式,同时加上了阻尼矩阵来表征土-结构动力相互作用中的能量损耗。阻尼矩阵的选取参照了Winkler地基梁中弹阻模型来表示桩—土的相互作用,认为接触单元中的阻尼必须能够反应桩周土的非线性性质,又必须考虑到接触单元的接触刚度影响,提出了阻尼矩阵的计算公式。编制了桩—土—结构动力相互作用的有限元计算程序,并分别计算了Goodman单元有阻尼和无阻尼的两种情况,发现在中小地震作用下,分析当接触单元含有阻尼时,上部结构的最大地震反应会有所减小,可见采用原有的Goodman单元计算在一定程度上夸大了上部结构的最大地震反应。通过分析输入地震动加速度峰值为0.15g﹑0.2g和0.3g的三种工况,得出随着输入加速度幅值的增加,上部结构的最大反应减小的幅度会更大一些。存在问题和对今后研究的建议:到目前为止,对动力荷载下的桩—土界面性状的实验研究工作开展比较少,也没有合适的桩

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论