版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省佛山市艺术高级中学2021年高三数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数在上可导,则等于
(
)
A.B.
C.
D.参考答案:A略2.中国古代数学著作《算法统综》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还”.其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”,则该人第五天走的路程为(
)A.48里 B.24里 C.12里 D.6里参考答案:C【分析】根据等比数列前项和公式列方程,求得首项的值,进而求得的值.【详解】设第一天走,公比,所以,解得,所以.故选C.【点睛】本小题主要考查等比数列前项和的基本量计算,考查等比数列的通项公式,考查中国古典数学文化,属于基础题.3.已知函数是定义域为的偶函数.当时,
若关于的方程(),有且仅有6个不同实数根,则实数的取值范围是A.
B.C.
D.或参考答案:C4.在中,设三边的中点分别为,则
A.
B.
C.
D.参考答案:【知识点】单元综合F4【答案解析】A
如图,=(),=(+),所以.故选A.【思路点拨】根据向量加法的平行四边形法则即可求出=(),=(+),所以.5.已知向量,满足,且关于x的函数在实数集R上单调递增,则向量,的夹角的取值范围是()A. B. C. D.参考答案:C【考点】平面向量数量积的运算.【分析】求导数,利用函数f(x)=2x3+3|a|x2+6a?bx+7在实数集R上单调递增,可得判别式小于等于0在R上恒成立,再利用,利用向量的数量积,即可得到结论.【解答】解:求导数可得f′(x)=6x2+6||x+6,则由函数f(x)=2x3+3|a|x2+6a?bx+7在实数集R上单调递增,可得f′(x)=6x2+6||x+6≥0恒成立,即x2+||x+≥0恒成立,故判别式△=2﹣4≤0恒成立,再由,可得8||2≤8||2cos<,>,∴cos<,>≥,∴<,>∈[0,],故选:C.6.某产品在某零售摊位的零售价x(单位:元)与每天的销售量y(单位:个)的统计资料如表所示:x16171819y50344131由表可得回归直线方程=x+中的=﹣4,据此模型预测零售价为20元时,每天的销售量为()A.26个 B.27个 C.28个 D.29个参考答案:D【考点】线性回归方程.【专题】函数思想;综合法;概率与统计.【分析】求出数据中心代入回归方程得出,从而得出回归方程,再令x=20求出.【解答】解:,=39.将()代入回归方程得39=﹣4×17.5+,解得=109.∴回归方程为=﹣4x+109.当x=20时,=﹣4×20+109=29.故选:D.【点评】本题考查了线性回归方程过数据中心的性质,属于基础题.7.若关于x的不等式xex﹣2ax+a<0的非空解集中无整数解,则实数a的取值范围是()A.[,) B.[,) C.[,e] D.[,e]参考答案:B【考点】函数恒成立问题.【分析】设g(x)=xex,f(x)=2ax﹣a,求出g(x)的导数,判断直线恒过定点,设直线与曲线相切于(m,n),求得切线的斜率和切点在直线上和曲线上,解方程可得a,再由题意可得当x=﹣1时,求得a,通过图象观察,即可得到a的范围.【解答】解:设g(x)=xex,f(x)=2ax﹣a,由题意可得g(x)=xex在直线f(x)=2ax﹣a下方,g′(x)=(x+1)ex,f(x)=2ax﹣a恒过定点(,0),设直线与曲线相切于(m,n),可得2a=(m+1)em,mem=2am﹣a,消去a,可得2m2﹣m﹣1=0,解得m=1(舍去)或﹣,则切线的斜率为2a=(﹣+1)e,解得a=,又由题设原不等式无整数解,由图象可得当x=﹣1时,g(﹣1)=﹣e﹣1,f(﹣1)=﹣3a,由f(﹣1)=g(﹣1),可得a=,由直线绕着点(,0)旋转,可得≤a<,故选:B.【点评】本题考查不等式解法问题,注意运用数形结合的方法,结合导数的运用:求切线的斜率,以及直线恒过定点,考查运算能力和观察能力,属于中档题.8.一算法的程序框图如图所示,若输出的,则输入的最大值为(
)A.
B.
C.
D.0参考答案:B9.设二次函数f(x)=ax2﹣2x+c(x∈R)的值域为[0,+∞),则+的最大值是(
)A. B.2 C. D.1参考答案:A【考点】二次函数的性质.【专题】函数的性质及应用;不等式的解法及应用.【分析】根据二次函数的图象和性质,可得c=,a>0,结合基本不等式,可得+的最大值.【解答】解:∵二次函数f(x)=ax2﹣2x+c(x∈R)的值域为[0,+∞),∴,故c=,a>0,故+=+==+1≤+1=,当且仅当a=3时,+的最大值取,故选:A.【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.10.定义在R上的函数f(x)满足f(x+4)=f(x),f(x)=.若关于x的方程f(x)﹣ax=0有5个不同实根,则正实数a的取值范围是()A.(,) B.(,) C.(16-6,) D.(,8-2)参考答案:D【分析】由题意可得函数f(x)是以4为周期的周期函数,做出函数y=f(x)与函数y=ax的图象,由图象可得方程y=﹣(x﹣4)2+1=ax在(3,5)上有2个实数根,解得0<a<8﹣2.再由方程f(x)=ax在(5,6)内无解可得6a>1.由此求得正实数a的取值范围.【解答】解:由题意可得函数f(x)是以4为周期的周期函数,做出函数y=f(x)与函数y=ax的图象,由图象可得方程y=﹣(x﹣4)2+1=ax即x2+(a﹣8)x+15=0在(3,5)上有2个实数根,由解得0<a<8﹣2.再由方程f(x)=ax在(5,6)内无解可得6a>1,a>.综上可得<a<8﹣2,故选D.二、填空题:本大题共7小题,每小题4分,共28分11.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为01到50的袋装奶粉中抽取5袋进行检验,现将50袋奶粉按编号顺序平均分成5组,用每组选取的号码间隔一样的系统抽样方法确定所选取的袋奶粉的编号,若第4组抽出的号码为36,则第1组中用抽签的方法确定的号码是
.参考答案:0612.巳知函数分别是二次函数和三次函数的导函数,它们在同一坐标系内的图象如图所示.(1)若,则________;(2)设函数,则的大小关系为________(用“<”连接).参考答案:(1)1;
(2)h(0)<h(1)<h(-1)略13.已知角的顶点在原点,始边在轴的正半轴上,终边在直线上,则
参考答案:14.在从空间中一点P出发的三条射线PA,PB,PC上分别取点M,N,Q,使PM=PN=PQ=1,且,,则三棱锥P-MNQ的外接球的体积为_______________.
参考答案:
略15.一个几何体的三视图如右图示,根据图中的数据,可得该几何体的表面积为
.参考答案:略16.函数的反函数是________________________参考答案:答案:
17.从集合中随机选取一个数记为,从集合中随机选取一个数记为,则直线不经过第三象限的概率为
.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)某沙漠地区经过人们的改造,到2010年底,已知将1万亩沙漠面积的30%转变成了绿洲,计划从2011年起,每年将剩余沙漠面积的16%改造成绿洲,同时上一年绿洲面积的4%又被浸蚀变成沙漠,从2011年开始:(1)经过年后该地区的绿洲面积为多少万亩?(2)经过至少多少年的努力,才能使该地区沙漠绿化率超过60%?(已知)参考答案:(1)设经过年绿洲面积为万亩,由题意得
,而数列满足,即,所以,,(2)解不等式,可得,所以略19.如图,抛物线的准线与轴交于点,过点的直线与拋物线交于两点,设到准线的距离.
(1)若,求拋物线的标准方程;(2)若,求直线的斜率.参考答案:(1)∵,∴,∴,得∴抛物线为;(2)设,由得:∴,则设直线的方程为,由,得,即,∴,∴,整理得,∴,∴,依题意,∴.21.20.(本小题满分12分)在四棱锥中,侧面底面,,底面是直角梯形,,,,.(1)求证:平面;(2)设为侧棱上一点,,试确定的值,使得二面角为.参考答案:(Ⅰ)平面底面,,所以平面,
所以,
如图,以为原点建立空间直角坐标系.则
,,所以,,
又由平面,可得,所以平面
……………4分
(Ⅱ)平面的法向量为,
,,所以,
设平面的法向量为,,,由,,得所以,,
所以,
……
8分所以,
注意到,得
………………
12分21.(本小题满分13分)设公比大于零的等比数列的前项和为,且,
,数列的前项和为,满足,,.
(1)求数列、的通项公式;
(2)设,若数列是单调递减数列,求实数的取值范围.参考答案:解:(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年杭州客车驾驶员从业资格证考试题库答案
- 2024年哈尔滨客运资格证应用能力考试内容是什么
- 2021年广东省公务员录用考试《行测》题(乡镇卷)【原卷版】
- 人教版八年级物理下册分层训练:简单机械(B卷解析版)
- 吉首大学《公共工程项目管理》2021-2022学年第一学期期末试卷
- 吉首大学《三维图像设计与制作》2021-2022学年第一学期期末试卷
- 吉林艺术学院《素描人体》2021-2022学年第一学期期末试卷
- 邯郸房产分割协议书范文
- 2024年公寓足疗转让协议书模板
- 吉林师范大学《遥感软件应用》2021-2022学年第一学期期末试卷
- 船舶租赁尽职调查
- 统编教学小学语文课外阅读《细菌世界历险记》导读课课件
- 植物生理学-植物的逆境生理
- 【课件】比的基本性质
- 小学英语人教新起点五年级上册Unit3Animalsunit3storytime
- 2023年江苏省淮安市中考化学试卷
- 医疗质量管理与持续改进工作记录
- 小学英语名师工作室工作计划2篇
- 中国旅游嘉兴风土人情城市介绍旅游攻略PPT图文课件
- 出口退税培训课件
- 校外培训机构消防演练方案(精选10篇)
评论
0/150
提交评论