




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
几种常见的优化方法电子结构几何机构函数稳定点最小点Taylor展开:V(x)=V(xk)+(x-xk)V’(xk)+1/2(x-xk)2V’’(xk)+…..当x是3N个变量的时候,V’(xk)成为3Nx1的向量,而V’’(xk)成为3Nx3N的矩阵,矩阵元如:Hessian1几种常见的优化方法电子结构函数稳定点Taylor展开:当x一阶梯度法a.SteepestdescendentSk=-gk/|gk|directiongradient知道了方向,如何确定步长呢?最常用的是先选择任意步长l,然后在计算中调节用体系的能量作为外界衡量标准,能量升高了则逐步减小步长。robust,butslow最速下降法2一阶梯度法Sk=-gk/|gk|directi最陡下降法(SD)
3最陡下降法(SD)3b.ConjugateGradient(CG)共轭梯度第k步的方向标量UsuallymoreefficientthanSD,alsorobust不需要外界能量等作为衡量量利用了上一步的信息4b.ConjugateGradient(CG)共轭2。二阶梯度方法这类方法很多,最简单的称为Newton-Raphson方法,而最常用的是Quasi-Newton方法。Quasi-Newton方法:useanapproximationoftheinverseHessian.Formofapproximationdiffersamongmethods牛顿-拉夫逊法BFGSmethodBroyden-Fletcher-Golfarb-ShannoDFPmethodDavidon-Fletcher-Powell52。二阶梯度方法这类方法很多,最简单的称为Newton-RaMoleculardynamics分子动力学HistoryItwasnotuntil1964thatMDwasusedtostudyarealisticmolecularsystem,inwhichtheatomsinteractedviaaLennard-Jonespotential.Afterthispoint,MDtechniquesdevelopedrapidlytoencompassdiatomicspecies,water(whichisstillthesubjectofcurrentresearchtoday!),smallrigidmolecules,flexiblehydrocarbonsandnowevenmacromoleculessuchasproteinsandDNA.Theseareallexamplesofcontinuousdynamicalsimulations,andthewayinwhichtheatomicmotioniscalculatedisquitedifferentfromthatinimpulsivesimulationscontaininghard-corerepulsions.6Moleculardynamics分子动力学HistWhatcanwedowithMD–CalculateequilibriumconfigurationalpropertiesinasimilarfashiontoMC.–Studytransportproperties(e.g.mean-squareddisplacementanddiffusioncoefficients).–MDintheNVT,NpTandNpHensembles–Theunitedatomapproximation–ConstraintdynamicsandSHAKE–Rigidbodydynamics–MultipletimestepalgorithmsExtendthebasicMDalgorithm7WhatcanwedowithMD–Calcul‘Impulsive’moleculardynamics
1.Dynamicsofperfectly‘hard’particlescanbesolvedexactly,butprocessbecomesinvolvedformanypart(N-bodyproblem).2.Canuseanumericalschemethatadvancesthesystemforwardintimeuntilacollisionoccurs. 3.Velocitiesofcollidingparticles(usuallyapair!)thenrecalculatedandsystemputintomotionagain.4.Simulationproceedsbyfitsandstarts,withameantimebetweencollisionsrelatedtotheaveragekineticenergyoftheparticles.5.Potentiallyveryefficientalgorithm,butcollisionsbetweenparticlesofcomplexshapearenoteasytosolve,andcannotbegeneralisedtocontinuouspotentials. 88Continuoustimemoleculardynamics1.Bycalculatingthederivativeofamacromolecularforcefield,wecanfindtheforcesoneachatomasafunctionofitsposition.2.Requireamethodofevolvingthepositionsoftheparticlesinspaceandtimetoproducea‘true’dynamicaltrajectory.3.StandardtechniqueistosolveNewton’sequationsofmotionnumerically,usingsomefinitedifferencescheme,whichisknownasintegration.4.ThismeansthatweadvancethesystembysomesmalltimestepΔt,recalculatetheforcesandvelocities,andthenrepeattheprocessiteratively.5.ProvidedΔtissmallenough,thisproducesanacceptableapproximatesolutiontothecontinuousequationsofmotion.9ContinuoustimemoleculardynaExampleofintegratorforMDsimulationOneofthemostpopularandwidelyusedintegratorsistheVerletleapfrogmethod:positionsandvelocitiesofparticlesaresuccessively‘leap-frogged’overeachotherusingaccelerationscalculatedfromforcefield.TheVerletschemehastheadvantageofhighprecision(oforderΔt4),whichmeansthatalongertimestepcanbeusedforagivenleveloffluctuations.Themethodalsoenjoysverylowdrift,providedanappropriatetimestepandforcecut-offareused.r(t+Dt)=r(t)+v(t+Dt/2)Dtv(t+Dt/2)=v(t-Dt/2)+a(t+Dt/2)Dt10ExampleofintegratorforMDsOtherintegratorsforMDsimulationsAlthoughtheVerletleapfrogmethodisnotparticularlyfast,thisisrelativelyunimportantbecausethetimerequiredforintegrationisusuallytrivialincomparisontothetimerequiredfortheforcecalculations.Themostimportantconcernforanintegratoristhatitexhibitslowdrift,i.e.thatthetotalenergyfluctuatesaboutsomeconstantvalue.Anecessary(butnotsufficient)conditionforthisisthatitissymplectic.Crudelyspeaking,thismeansthatitshouldbetimereversible(likeNewton’sequations),i.e.ifwereversethemomentaofallparticlesatagiveninstant,thesystemshouldtracebackalongitsprevioustrajectory.11OtherintegratorsforMDsimulOtherintegratorsforMDsimulationsTheVerletmethodissymplectic,butmethodssuchaspredictor-correctorschemesarenot.Non-symplecticmethodsgenerallyhaveproblemswithlongtermenergyconservation.Havingachievedlowdrift,wouldalsoliketheenergyfluctuationsforagiventimesteptobeaslowaspossible.Alwaysdesirabletousethelargesttimesteppossible.Ingeneral,thetrajectoriesproducedbyintegrationwilldivergeexponentiallyfromtheirtruecontinuouspathsduetotheLyapunovinstability.However,thisdoesnotconcernusgreatly,asthethermalsamplingisunaffected⇒expectationvaluesunchanged.12OtherintegratorsforMDsimulChoosingthecorrecttimestep…1.
Thechoiceoftimestepiscrucial:tooshortandphasespaceissampledinefficiently,toolongandtheenergywillfluctuatewildlyandthesimulationmaybecomecatastrophicallyunstable(“blowup”).2.Theinstabilitiesarecausedbythemotionofatomsbeingextrapolatedintoregionswherethepotentialenergyisprohibitivelyhigh(e.g.atomsoverlapping).3.Agoodruleofthumbisthatwhensimulatinganatomicfluid,thetimestepshouldbecomparabletothemeantimebetweencollisions(about5fsforArat298K).4.Forflexiblemolecules,thetimestepshouldbeanorderofmagnitudelessthantheperiodofthefastestmotion(usuallybondstretching:C—Haround10fssouse1fs).13ChoosingthecorrecttimestepForclassicMD,therecouldbemanytrickstospeedupcalculations,allcenteringaroundreducingtheeffortinvolvedinthecalculationoftheinteratomicforces,asthisisgenerallymuchmoretime-consumingthanintegration.ForexampleTruncatethelong-rangeforces:charge-charge,charge-dipoleLook-uptablesForfirstprinciplesMD,asforcesareevaluatedfromquantummechanics,weareonlyconcernedwiththetime-step.14ForclassicMD,therecouldbeBecausetheinteractionsarecompletelyelasticandpairwiseacting,bothenergyandmomentumareconserved.Therefore,MDnaturallysamplesfromthemicrocanonicalorNVEensemble.Asmentionedpreviously,theNVEensembleisnotveryusefulforstudyingrealsystems.Wewouldliketobeabletosimulatesystemsatconstanttemperatureorconstantpressure.ThesimplestMD,likeverletmethod,isadeterministicsimulationtechniqueforevolvingsystemstoequilibriumbysolvingNewton’slawsnumerically.15BecausetheinteractionsarecMDindifferentthermodynamicensemblesInthislecture,wewilldiscusswaysofusingMDtosamplefromdifferentthermodynamicensembles,whichareidentifiedbytheirconservedquantities.
Canonical(NVT)–Fixednumberofparticles,totalvolumeandtemperature.Requirestheparticlestointeractwithathermostat.
Isobaric-isothermal(NpT)–Fixednumberofparticles,pressureandtemperature.Requiresparticlestointeractwithathermostatandbarostat.
Isobaric-isenthalpic(NpH)–Fixednumberofparticles,pressureandenthalpy.Unusual,butrequiresparticlestointeractwithabarostatonly.16MDindifferentthermodynamicAdvancedapplicationsofMDWewillthenstudysomemoreadvancedMDmethodsthataredesignedspecificallytospeedup,ormakepossible,thesimulationoflargescalemacromolecularsystems.Allthesemethodsshareacommonprinciple:theyfreezeout,ordecouple,thehighfrequencydegreesoffreedom.Thisenablestheuseofalargertimestepwithoutnumericalinstability.Thesemethodsinclude:–Unitedatomapproximation–ConstraintdynamicsandSHAKE–Rigidbodydynamics–Multipletimestepalgorithms17AdvancedapplicationsofMD17RevisionofNVEMDLet’sstartbyrevisinghowtodoNVEMD.Recallthatwecalculatedtheforcesonallatomsfromthederivativeoftheforcefield,thenintegratedthee.o.m.usingafinitedifferenceschemewithsometimestepΔt.Wethenrecalculatedtheforcesontheatoms,andrepeatedtheprocesstogenerateadynamicaltrajectoryintheNVEensemble.Becausethemeankineticenergyisconstant,theaveragekinetictemperatureTKisalsoconstant.However,inthermalequilibrium,weknowthatinstantaneousTKwillfluctuate.IfwewanttosamplefromtheNVTensemble,weshouldkeepthestatisticaltemperatureconstant.18RevisionofNVEMD18ExtendedLagrangiansThereareessentiallytwowaystokeepthestatisticaltemperatureconstant,andthereforesamplefromthetrueNVTensemble.–Stochastically,usinghybridMC/MDmethods–Dynamically,viaanextendedLagrangianWewilldescribethelattermethodinthislectureAnextendedLagrangianissimplyawayofincludingadegreeoffreedomwhichrepresentsthereservoir,andthencarryingoutasimulationonthisextendedsystem.Energycanflowdynamicallybackandforthfromthereservoir,whichhasacertainthermal‘inertia’associatedwithit.AllwehavetodoisaddsometermstoNewton’sequationsofmotionforthesystem.19ExtendedLagrangians19ExtendedLagrangiansThestandardLagrangianLiswrittenasthedifferenceofthekineticandpotentialenergies:Newton’slawsthenfollowbysubstitutingthisintotheEuler-Lagrangeequation:Newton’sequationsandLagrangianformalismareequivalent,butthelatterusesgeneralisedcoordinates...20ExtendedLagrangians..20CanonicalMDSo,ourextendedLagrangianincludesanextracoordinateζ,whichisafrictionalcoefficientthatevolvesintimesoastominimisethedifferencebetweentheinstantaneouskineticandstatisticaltemperatures.Themodifiedequationsofmotionare:TheconservedquantityistheHelmholtzfreeenergy.(modifiedformofNewtonII)21CanonicalMD(modifiedformofCanonicalMDByadjustingthethermostatrelaxationtimetT
(usuallyintherange0.5to2ps)thesimulationwillreachanequilibriumstatewithconstantstatisticaltemperatureTS.TSisnowaparameterofoursystem,asopposedtothemeasuredinstantaneousvalueofTKwhichfluctuatesaccordingtotheamountofthermalenergyinthesystematanyparticulartime.ToohighavalueoftTandenergywillflowveryslowlybetweenthesystemandthereservoir(overdamped).ToolowavalueoftTandtemperaturewilloscillateaboutitsequilibriumvalue(underdamped).ThisistheNosé-Hooverthermostatmethod.22CanonicalMD22CanonicalMDTherearemanyothermethodsforachievingconstanttemperature,butnotallofthemsamplefromthetrueNVTensembleduetoalackofmicroscopicreversibility.Wecallthesepseudo-NVTmethods,andtheyinclude:–BerendsenmethodVelocitiesarerescaleddeterministicallyaftereachstepsothatthesystemisforcedtowardsthedesiredtemperature–GaussianconstraintsMakesthekineticenergyaconstantofthemotionbyminimisingtheleastsquaresdifferencebetweentheNewtonianandconstrainedtrajectoriesThesemethodsareoftenfaster,butonlyconvergeonthetruecanonicalaveragepropertiesasO(1/N).23CanonicalMD23Isothermal-isobaricMDWecanapplytheextendedLagrangianapproachtosimulationsatconstantpressurebysimplyaddingyetanothercoordinatetooursystem.Weuseη,whichisafrictionalcoefficientthatevolvesintimetominimisethedifferencebetweentheinstantaneouspressurep(t),measuredbyavirialexpression,andthepressureofanexternalreservoirpext.TheequationsofmotionforthesystemcanthenbeobtainedbysubstitutingthemodifiedLagrangianintotheEuler-Lagrangeequations.Thesenowincludetworelaxationtimes:oneforthethermostattT,andoneforthebarostattp.24Isothermal-isobaricMD24Isothermal-isobaricMDTheisknownastheNosé-Hoovermethod(Melchionnatype)andtheequationsofmotionare:25Isothermal-isobaricMD25Isothermal-isobaricMD26Isothermal-isobaricMD26Constraintdynamicsfreezethebondstretchingmotionsofthehydrogens(oranyotherbond,inprinciple).Weapplyasetofholonomicconstraintstothesystem,whichar
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年高考真题全国乙卷物理试卷
- 联营协议合同范本石油
- 老年机构捐赠合同范本
- 司机招聘合同用工合同范本
- 上海小学试卷英语
- 买房子贷款合同范本
- 医美加盟合同范本
- 中国茶文化的心得体会
- 机械制造基础题库与答案
- 个人技术入股合作协议书
- 2025人教版一年级下册数学教学进度表
- DeepSeek教案写作指令
- 休学复学申请书
- 北京2025年02月北京市地质矿产勘查院所属事业单位公开招考工作人员笔试历年典型考题(历年真题考点)解题思路附带答案详解
- DeepSeek零基础到精通手册(保姆级教程)
- 瓷砖铺贴劳务承包协议书
- 2025年四川司法警官职业学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 新建污水处理厂工程EPC总承包投标方案(技术标)
- 柔性电路板自动化制造-深度研究
- 《宏观经济管理研究》课件
- 苏教版五年级下册数学全册教案设计
评论
0/150
提交评论