手写数字识别系统课件_第1页
手写数字识别系统课件_第2页
手写数字识别系统课件_第3页
手写数字识别系统课件_第4页
手写数字识别系统课件_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

基于SVM的手写数字识别系统2150230509文成软件工程1基于SVM的手写数字识别系统21502305091Introduction手写数字识别系统:

手写数字识别是符号识别的一个分支,虽然只是识别简单的10个数字,但却有着非常大的实用价值。

在我们的日常生活中,每天都要进行大量的文档处理工作,税单、银行支票、汇款单、信用卡账单的处理,以及邮局信函的分检等等,如何利用计算机字符识别和文档处理技术,使人们从这些繁重的手工劳动中解放出来已成为一个迫切需要解决的问题。另外随着平板电脑和触摸屏手机的普及,手写输入成为了很多人的主要输入方式。

手写数字虽然只有10个种类,但很多情况下对识别的精度要求非常高,而且每个人都有不同的字迹,要做到准确地识别还是有一定难度的。况且在实际应用中,手写数字识别的精确度要求要比汉字严格的多,因为数字识别经常用在财务、金融等领域。2Introduction手写数字识别系统:2Literaturereview

目前解决该问题的技术已经相当成熟。

包括我们手机上的大部分输入法不仅支持数字的识别,而且支持汉字的识别,而且准确度也比较高。手写识别常见的例子:“SoGou拼音输入法”3Literaturereview 目前解决该问题的技术已经ProposedmethodSVM支持向量机(是借助最优化方法来解决机器学习问题的新工具,是克服“维数灾难”和“过学习等传统困难的有力手段”)机理来源于解决分类问题:系统随机产生一个超平面,通过训练移动它,直到训练集合中不同的类别正好位于该超平面的不同侧面。支持向量机的机理是:寻找一个满足分类要求的最优分类超平面,即两侧空白空间最大化。L1L2H1H2H4ProposedmethodSVM支持向量机机理L1L2SVM的特点与不足特点:(1)非线性映射是SVM方法的理论基础,SVM利用内积核函数代替向高维空间的非线性映射;

(2)对特征空间划分的最优超平面是SVM的目标,最大化分类边际的思想是SVM方法的核心;

(3)支持向量是SVM的训练结果,在SVM分类决策中起决定作用的是支持向量。

(4)SVM的最终决策函数只由少数的支持向量所确定,计算的复杂性取决于支持向量的数目,而不是样本空间的维数,这在某种意义上避免了“维数灾难”。

(5)少数支持向量决定了最终结果,这不但可以帮助我们抓住关键样本、“剔除”大量冗余样本,而且注定了该方法不但算法简单(6)SVM在小样本训练集上能够得到比其它算法好很多的结果。两个不足:

(1)SVM算法对大规模训练样本难以实施(由于SVM是借助二次规划来求解支持向量,而求解二次规划将涉及m阶矩阵的计算(m为样本的个数),当m数目很大时该矩阵的存储和计算将耗费大量的机器内存和运算时间。)(2)用SVM解决多分类问题存在困难(经典的支持向量机算法只给出了二类分类的算法,而在数据挖掘的实际应用中,一般要解决多类的分类问题。可以通过多个二类支持向量机的组合来解决。)5SVM的特点与不足特点:两个不足:

(1)SVM算法对大规训练集:MNIST手写数字图片库(https:///archive/p/supplement-of-the-mnist-database-of-handwritten-digits/downloads)手写数字识别的一般方法(总共提供60000个训练样本,每个数字提供6000个训练样本。另外提供1000个测试数据)训练样本测试样本图像预处理图像预处理SVM训练识别器结果6训练集:MNIST手写数字图片库手写数字识别的一般方法(总共77889928*2810*10压缩训练样本1028*2810*10压缩训练样本10(SVM最初设计出来是用于解决二分类问题的,多分类问题需将多个SVM的二分类器组合起来。)0非0SVM训练。。。1非1核函数的选择:核函数是SVM的核心,不同的核函数可以构造不同的SVM分类器,比如线性核函数,二次核函数和多项式核函数,径向基核函数等等。//C++、opencv2.4+SVM实现//建立训练样本MattrainingDataMat(x,x,CV_32FC1,trainingData);MatlabelsMat(x,x,CV_32FC1,labels);//设置SVM参数CvSVMParamsparams;params.svm_type=CvSVM::C_SVC;params.kernel_type=CvSVM::LINEAR;params.term_crit=cvTermCriteria(CV_TERMCRIT_ITER,100,1e-6);//训练支持向量机CvSVMSVM;SVM.train(trainingDataMat,labelsMat,Mat(),Mat(),params);11(SVM最初设计出来是用于解决二分类问题的,多分类问题需将多测试样本预处理压缩10*1012测试样本预处理压缩10*1012实验演示(Windows)实现:C++、Opencv+SVM13实验演示(Windows)实现:C++、Opencv+S实验演示(Android)14实验演示(Android)14实验结果分析

当手写字体比较正式的情况下,其识别效果较好,但当手写字比较随意时,识别效果比较差。比如右图横着写的8和加了噪音的3。

这存在多个方面因素,一方面是由于训练样本中不存在歪曲的样本,另一方面用SVM解决多分类问题存在困难。还有图像预处理时将原图像映射成10*10的,存在精度丢失。每个数字100个训练样本,测试数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论