版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十二章电子能谱分析法12.1俄歇电子能谱12.2X射线光电子能谱12.1俄歇电子能谱俄歇电子能谱的发展:1925年俄歇在威尔逊云雾室中观察到俄歇电子,并对其产生作了理论阐述。1953年J.J.Lander首次使用了电子束激发的俄歇电子能谱(AugerElectronSpectroscopy,AES)并探讨了俄歇效应应用于表面分析的可能性。1967年在Harris采用了微分锁相技术,使俄歇电子能谱获得了很高的信背比后,才开始出现了商业化的俄歇电子能谱仪。1969年Palmberg等人引入了筒镜能量分析器(CylindricalMirrorAnalyser,CMA),使得俄歇电子能谱的信背比获得了很大的改善。
俄歇电子能谱的特点俄歇电子能谱可以分析除氢氦以外的所有元素,是有效的定性分析工具。俄歇电子能谱具有非常灵敏的表面性,是最常用的表面分析手段,检测深度在0.5-2nm;检测极限约为10-3原子单层。采用电子束作为激发源,具有很高的空间分辨率,最小可达到10nm。可进行微区分析和深度分析,具有三维分析的特点。要求是导体或半导体材料。俄歇电子能谱的发展趋势高空间分辨率,10nm。更好的深度分辨能力,样品旋转技术,提高深度分辨能力。图像谱仪功能,可以获得元素图像分布和化学态图像分布信息。高速分析和自动分析。俄歇电子能谱的重要性表面分析的主要手段。薄膜材料表面与界面分析需要。纳米材料发展的需要。具有微区,深度和图像分析的能力。俄歇电子能谱的主要应用适合于纳米薄膜材料的分析。金属,半导体,电子材料,机械,陶瓷材料薄膜材料,薄膜催化材料等方面有重要的作用。俄歇电子能谱提供的信息表面元素的定性鉴定;表面元素的半定量分析。表面成份的微区分析;元素的深度分布分析。元素的二维分布分析;元素的化学价态分析。俄歇电子能谱的原理俄歇电子的产生俄歇电子能谱的原理比较复杂,涉及到原子轨道上三个电子的跃迁过程。当具有足够能量的粒子(光子、电子或离子)与一个原子碰撞时,原子内层轨道上的电子被激发出后,在原子的内层轨道上产生一个空穴,形成了激发态正离子。这种激发态正离子是不稳定的,必须通过退激发而回到稳定态。在这激发态离子的退激发过程中,外层轨道的电子可以向该空穴跃迁并释放出能量,而该释放出的能量又可以激发同一轨道层或更外层轨道的电子使之电离而逃离样品表面,这种出射电子就是俄歇电子。
俄歇电子的产生图1俄歇电子的跃迁过程图2俄歇电子的跃迁过程能级图俄歇电子能量分布在电子与固体相互作用过程中,会产生大量的二次电子,均包含有相关信息;弹性散射电子,俄歇电子,能量损失电子,二次电子等;能量损失又可分为特征损失和非特征损失;俄歇电子的信号很弱;二次电子俄歇电子能量损失电子非弹性损失电子弹性散射峰,能量保持不变;低动能宽峰,入射电子激发的二次电子在逃逸到表面过程中所产生的非弹性碰撞的损失峰;在该两峰之间的小峰,其位置与入射能量无关,是俄歇电子峰。此外,还存在特征能量损失峰,随入射能量而变化;俄歇跃迁过程定义及标记
俄歇跃迁过程有一个严格的定义,它仅指跃迁电子的轨道与填充电子以及孔穴所处的轨道的不同能级之间产生的非辐射跃迁过程。当填充电子或跃迁电子与激发态孔穴所在轨道能级相同时,该跃迁过程被定义为柯斯特-可罗尼格(Coster-Kroning)跃迁。当激发孔穴、填充电子以及跃迁电子的轨道能级都相同时,该种跃迁就定义为超级柯斯特-可罗尼格(SuperCoster-Kroning)跃迁。
俄歇跃迁过程定义及标记俄歇跃迁所产生的俄歇电子可以用它跃迁过程中涉及的三个原子轨道能级的符号来标记;如图1和2所示的俄歇跃迁所产生的俄歇电子可被标记为WXY跃迁。其中激发孔穴所在的轨道能级标记在首位,中间为填充电子的轨道能级,最后是激发俄歇电子的轨道能级。如CKLL跃迁,表明在碳原子的K轨道能级(1s)上激发产生一个孔穴,然后外层的L轨道能级(2s)的电子填充K轨道能级上的孔穴,同时外层L轨道能级(2p)上的另一电子激发发射。
俄歇电子动能
俄歇电子能谱主要是依靠俄歇电子的能量来识别元素的,因此准确了解俄歇电子的能量对俄歇电子能谱的解析是非常重要的。通常有关元素的俄歇电子能量可以从俄歇手册上直接查得,不需要进行理论计算。但为了更好地理解俄歇电子能量的物理概念以及理解俄歇化学效应的产生,下面简单介绍俄歇电子动能的半经验计算方法。
俄歇电子动能从俄歇电子跃迁过程可知,俄歇电子的动能只与元素激发过程中涉及的原子轨道的能量有关,而与激发源的种类和能量无关。俄歇电子的能量可以从跃迁过程涉及的原子轨道能级的结合能来计算。EWXY(Z)=EW(Z)-EX(Z)-EY(Z+)
俄歇电子动能通过半经验的简化,俄歇电子的能量表达式(1)简化为表达式(2)。EWXY(Z)=EW(Z)-1/2[EX(Z+1)+EX(Z)]-1/2[EY(Z+1)+EY(Z)] 式中EX(Z+1)--原子序数为Z+1元素的原子外层X轨道能级的电离能,eV;EY(Z+1)--原子序数为Z+1元素的原子外层Y轨道能级的电离能,eV;对于固体发射的俄歇电子,还需要克服电子能谱仪的功函,因此可以用式(3)来表示出射俄歇电子的能量。EWXY(Z)=EW(Z)-1/2[EX(Z+1)+EX(Z)]-1/2[EY(Z+1)+EY(Z)]-s式中s--电子能谱仪的功函,eV。俄歇电子强度
俄歇电子的强度是俄歇电子能谱进行元素定量分析的基础。但由于俄歇电子在固体中激发过程的复杂性,到目前为止还难以用俄歇电子能谱来进行绝对的定量分析。俄歇电子的强度除与元素的存在量有关外,还与原子的电离截面,俄歇产率以及逃逸深度等因素有关。所谓电离截面是指当原子与外来荷能粒子(光子,电子或离子)发生作用时,发生电子跃迁产生孔穴的几率。根据半经验方法计算,电离截面可以用下式来进行计算。QW--原子的电离截面,cm2;EW--W能级电子的电离能,eV;U--激发源能量与能级电离能之比,EP/EW;EP--激发源的能量,eV;而aW和bW是两个常数。电离截面俄歇电子强度电离截面(QW)是激发能与电离能比(U)的函数。图4揭示了电离截面与U的关系。从图上可见,当U为2.7时,电离截面可以达到最大值。该图说明只有当激发源的能量为电离能的2.7倍时,才能获得最大的电离截面和俄歇电子强度。电离截面与激发能与电离能之比的关系
激发电压在常规分析时,电子束的加速电压一般采用3kV。几乎都可激发所有元素的特征俄歇电子。在实际分析中,为了减少电子束对样品的损伤或降低样品的荷电效应,也可以采取更低的激发能。对于有些元素,由于特征俄歇电子的能量较高,一般可采用较高的激发源能量如5keV。在进行高空间分辨率的微区分析时,为了保证具有足够的空间分辨率,也常用10keV以上的激发能量。此外,还必须注意元素的灵敏度因子是随激发源的能量而变的,而一般手册能提供的元素灵敏度因子均是在3.0keV,5.0keV和10.0keV的数据。总之,在选择激发源能量时,必须考虑电离截面,电子损伤,能量分辨率以及空间分辨率等因素,视具体情况而定。俄歇跃迁几率
在激发原子的去激发过程中,存在有两种不同的退激发方式。一种是前面所介绍的电子填充孔穴产生二次电子的俄歇跃迁过程,另一种则是电子填充孔穴产生X射线的过程,定义为荧光过程。俄歇跃迁几率(PA)与荧光产生几率(PX)之和为1, PA+PX=1
俄歇跃迁几率俄歇跃迁几率及荧光几率与原子序数的关系
根据半经验计算,K能级激发的PA与PX的关系可以用图5表示。从图上可见,当元素的原子序数小于19时(即轻元素),俄歇跃迁几率(PA)在90%以上。直到原子序数增加到33时,荧光几率才与俄歇几率相等根据俄歇电子能量分布图和俄歇几率分布图,原则上对于原子序数小于15的元素,应采用K系列的俄歇峰;而原子序数在16~41间的元素,L系列的荧光几率为零,应采用L系列的俄歇峰;而当原子序数更高时,考虑到荧光几率为零,应采用M系列的俄歇峰。在实际分析中,选用哪个系列的俄歇线还必须考虑到信号强度的问题。如Si元素,虽然K系俄歇线的荧光几率几乎为零,但由于SiKLL(1380)线的信号较弱,最常用的分析线则是SiLVV(89)。平均自由程与平均逃逸深度
俄歇电子的强度还与俄歇电子的平均自由程有关。因为在激发过程产生的俄歇电子在向表面输运过程中,俄歇电子的能量由于弹性和非弹性散射而损失能量,最后成为二次电子背景。而只有在浅表面产生的俄歇电子才能被检测到,这也是俄歇电子能谱应用于表面分析的基础。逃逸出的俄歇电子的强度与样品的取样深度存在指数衰减的关系。N=N0e-z/
在三种材料中理论计算的非弹性平均自由程与电子能量的关系平均自由程一般来说,当z达到3时,能逃逸到表面的电子数仅占5%,这时的深度称为平均逃逸深度。平均自由程并不是一个常数,它与俄歇电子的能量有关。图表示了平均自由程与俄歇电子能量的关系。从图上可见,在75~100eV处,存在一个最小值。俄歇电子能量在100~2000eV之间,与E1/2成正比关系。这一能量范围正是进行俄歇电子能谱分析的范围平均自由程平均自由程不仅与俄歇电子的能量有关,还与元素材料有关。M.P.Seah等综合了大量实验数据,总结出了以下经验公式; 对于纯元素:=538E-2+0.41(aE)1/2 对于无机化合物:=2170E-2+0.72(aE) 对于有机化合物:=49E-2+0.11E1/2 式中E--以费米能级为零点的俄歇电子能量,eV; a--单原子层厚度,nm;积分谱和微分谱俄歇谱一般具有两种形式,积分谱和微分谱;积分谱可以保证原来的信息量,但背景太高,难以直接处理;可以直接获得。微分谱具有很高的信背比,容易识别,但会失去部分有用信息以及解释复杂。可通过微分电路或计算机数字微分获得。俄歇化学效应虽然俄歇电子的动能主要由元素的种类和跃迁轨道所决定;但由于原子内部外层电子的屏蔽效应,芯能级轨道和次外层轨道上的电子的结合能在不同的化学环境中是不一样的,有一些微小的差异。这种轨道结合能上的微小差异可以导致俄歇电子能量的变化,这种变化就称作元素的俄歇化学位移,它取决于元素在样品中所处的化学环境。
俄歇化学效应一般来说,由于俄歇电子涉及到三个原子轨道能级,其化学位移要比XPS的化学位移大得多。利用这种俄歇化学位移可以分析元素在该物种中的化学价态和存在形式。由于俄歇电子能谱的分辨率低以及化学位移的理论分析的困难,俄歇化学效应在化学价态研究上的应用未能得到足够的重视。随着俄歇电子能谱技术和理论的发展,俄歇化学效应的应用也受到了重视,甚至可以利用这种效应对样品表面进行元素的化学成像分析。
俄歇化学效应与XPS相比,俄歇电子能谱虽然存在能量分辨率较低的缺点,但却具有XPS难以达到的微区分析优点。此外,某些元素的XPS化学位移很小,难以鉴别其化学环境的影响,但它们的俄歇化学位移却相当大,显然,后者更适合于表征化学环境的作用。同样在XPS中产生的俄歇峰其化学位移也比相应XPS结合能的化学位移要大得多。因此俄歇电子能谱的化学位移在表面科学和材料科学的研究中具有广阔的应用前景.
俄歇化学效应俄歇化学效应有三类;原子发生电荷转移引起内层能级移动;化学环境变化引起价电子态密度变化,从而引起价带谱的峰形变化;俄歇电子逸出表面时由于能量损失机理引起的低能端形状改变,同样也与化学环境有关。俄歇化学位移影响因素分析
对于WXY俄歇跃迁过程,俄歇电子的能量可用方程表示。EWXY(Z)=EW(Z)-EX(Z)-EY'(Z)
其中,EWXY(Z)是原子序数为Z的元素经WXY跃迁后所产生的俄歇电子的能量,EW(Z)和EX(Z)分别是受激和驰豫轨道的结合能,EY'(Z)是在原子存在空穴状态下Y轨道的电子结合能,因体系处于激发状态,该能量比其稳态值EY(Z)要大。化学位移当元素所处的化学环境发生变化时,俄歇电子能谱的化学位移ΔE可用下式表示:ΔEWXY(z)=ΔEW(z)-ΔEX(z)-ΔEY(z)随着化学环境变化俄歇电子动能位移将涉及原子的三个能级能量的变化,如果将等式右边三项分别考察为因化学环境变化所引起的相应的轨道结合能变化,这样我们利用较为成熟的XPS化学位移的理论模型近似地处理俄歇化学位移效应。根据已普遍接受的XPS化学位移的电荷势模型,内层能级的位移量和原子所荷的有效电荷有线性关系。化学位移EA=KA×qA+VA+LKA为常数,qA为A原子上的有效电荷。VA为相邻原子在A原子处产生的有效势能,一般按点电荷处理,L为选择能量参考点而引入的常量,与基准原子有关。对于A原子的W,X,Y能级,俄歇化学位移与原子电荷的关系可表示为式。ΔEWXY(Z)=(KW-KX-KY)×qA-VA-L化学位移当A与B原子结合时,其俄歇化学位移用方程式(17)表示;χA和χB为形成化学键时A,B原子的电负性如KW,KX,KY三者相近,由式(17)获得的俄歇化学位移和XPS的化学位移相近但符号相反化学位移实验结果表明俄歇化学位移在许多情况下比XPS的化学位移要大得多,显然,借用简单的电荷势模型不能确切地表达价电荷在俄歇跃迁过程中复杂的驰豫过程。这时必须更多地考虑外部原子的弛豫效应的影响。原子外弛豫能是指与A原子相结合的各原子中的价电子在A原子由激发状态趋于稳态时所产生的能量,作为一种近似处理,这里假设对A原子而言,其原子外驰豫能可等同为极化能或屏蔽能。事实上弛豫效应对化学位移有较大的影响,尤其是对俄歇过程中的双电荷离子将有更大的影响。化学位移Shirley等将原子轨道结合能的变化ΔEB总结为由电荷势模型的轨道结合能变化ΔE与原子外部弛豫能-R之和,ΔEB=ΔE-R;则俄歇化学位移(ΔE'WXY)可用式(19)表示,式中r为离子半径,k为介电常数
化学位移表明俄歇化学位移不仅与元素的形式电荷QA、相邻元素的电负性差有关,而且同离子的极化效应有关。如果只考虑通常意义上的电荷势模型,这时俄歇化学位移与元素化合价的关系可用式(17)表示。这时,俄歇化学位移与原子的电荷有线性关系。当A原子失去电子变为正价时,QA为正。当KW<KX+KY时,俄歇化学位移ΔEWXY(Z)为负值,俄歇电子的能量降低。反之,ΔEWXY(Z)为正,俄歇电子的能量增加。一般元素的化合价越正,俄歇电子动能越低,化学位移越负;相反地,化合价越负,俄歇电子动能越高,化学位移越正。这结果与俄歇化学位移实验数据是一致的。化学位移对于相同化学价态的原子,俄歇化学位移的差别主要和原子间的电负性差有关。电负性差越大,原子得失的电荷也越大,因此俄歇化学位移也越大。对于电负性大的元素,可以获得部分电子荷负电。因此俄歇化学位移为正,俄歇电子的能量比纯态要高。相反,对于电负性小的元素,可以失去部分电子荷正电。因此俄歇化学位移为负,俄歇电子的能量比纯元素状态时要低。
化学位移对于大多数情况,仅用简单的电荷势理论难以解释俄歇化学位移,这时必须考虑原子外弛豫能(极化能)的作用。俄歇化学位移应当用式(19)计算。这样影响驰豫能大小的直接参数是离子半径r。元素的有效离子半径越小,极化作用越强,驰豫能数值越大。由于弛豫能项为负值,因此对正离子,极化作用使得俄歇动能降低,俄歇化学位移增加。对于负离子,极化作用使得俄歇动能增加,俄歇化学位移降低。俄歇电子的定义及表达它是由受激原子的内壳层出现空位,某一能级上的电子向空位跃迁,同时又激发了另一能级上的电子使脱离原子并发射出去,这就是俄歇电子。这种无辐射跃迁的去激发过程,称为俄歇过程或俄歇效应。常用WiXpYq表示任意俄歇跃迁或俄歇电子。i、p、q为整数,W、X、Y为各能级名称,即原子受激时在Wi能级上产生空位,而Xp能级上的电子跃迁到空位时又将Yq能级上的电子激发脱离原子,该电子被称为WiXpYq俄歇电子。例如,KLL、LMM、MNN等俄歇电子。俄歇电子能谱法定义:用具有一定能量的电子束(或X射线)激发样品俄歇效应,通过检测俄歇电子的能量和强度,从而获得有关表面层化学成分和结构的信息的方法。各元素原子的不同能级上的电子具有不同能量,因此俄歇电子的能量大小表征着元素特征信息。俄歇谱仪就是利用电子激发试样,产生俄歇电子,经能量分析器将电子按能量大小和数量来识别元素及其数量,达到定性和定量分析的目的。俄歇谱仪使用具有能量Ep=3keV,束流强度为Ip的初级电子激发固体试样,从试样发射出的电子经(筒镜)能量分析器(CMA)加以筛分后进入接收装置,经过电子倍增器放大,再经锁相放大后送入X-Y记录仪画出谱线,或者转换成数据量输入计算机,以备使用。俄歇电子谱仪原理图俄歇谱强度IA俄歇谱强度IA用俄歇电流的大小,即俄歇峰所包含的俄歇电子的多少表示,可按下式计算:式中,B为背散射增强因子;R表面粗糙度因子;(secα)是入射电子的入射方向与试样表面的法向成α角时的角度因子;ni为产生俄歇效应的第i种元素单位体积中的原子数目;Ip为初级电子束流;θw为电离截面,表征试样中能产生W空位的原子数目;PWXY为产生WXY俄歇跃迁的几率,当原子序数Z≤15时,KLL俄歇跃迁的PWXY≈1.0,而15<Z≤42时,LMM俄歇跃迁PWXY≈1.0,若Z﹥42,则MNN俄歇跃迁PWXY≈1.0;λ是平均自由程,即俄歇电子从产生处向表面输运时能量无损的距离,一般只有0.3~2nm之间处的信息,只能进行表面分析;θ为俄歇电子出射方向和试样表面法向方向之间的夹角;Ω/4π为能量分析器所接收的占各方向总数,即近似等于能量分析器的传输率,Ω为能量分析器所能接收出射电子的立体角。微分谱与直接谱根据则有I1与成正比,利用锁相放大技术,测量有E0与对应的I1便可得到与E的微分谱,如下图(c)(d)所示。与之对应的直接谱便是EN(E)-E,如下图(a)(b)所示。俄歇电子谱的定性和定量分析定性分析:根据俄歇谱峰所对应的能量可用来识别元素。定量分析:根据俄歇电流的大小(即俄歇峰所包含电子的多少)可以确定元素的含量。定性分析定性分析的任务:根据测定试样的微分谱上负峰的位置,进行元素分析。其方法与X射线物相分析一样。通过测定建立起各元素的标准谱图,测定试样的俄歇谱与标准谱图进行对比。各元素以及各激发线的俄歇电子动能图。每个元素均具有多条激发线。每个激发线的能量是固定的,仅与元素及激发线有关。原子序数3-10的原子产生KLL俄歇电子。对于原子序数大于14的原子还可以产生KLM,LMM,MNN俄歇过程。从图中分析得出:定性分析的步骤:1)首先把注意力集中在强峰上,把对应于此峰的可能元素减少到2~3种,然后查出这几种可能元素的标准谱逐一对比核实,最后确定是什么元素;2)元素被确定后利用标准谱图,标明属于此元素的所有峰;3)重复上面的步骤找出余下峰的可能元素,直到全部查清;4)最后,如果还有难以确定的峰,就可能是损失一定能量背射出来的初级电子的能量损失峰,此时可通过改变初级电子束能量,观察此峰是否移动,若跟着移动,就不是俄歇谱峰。定量分析根据微分谱上的正峰和负峰的高度差,即峰—峰值IiWXY,定量确定元素的含量。因为俄歇谱峰的强度式中除ni外,其余各项如果测定或计算出后,根据IiWXY的测定,即可计算出ni。若试样含有N个元素,则单位体积内,元素i的摩尔分数xi为常用的定量方法有标样法和相对灵敏度因子法纯元素标样法以各种纯元素j作标样,在相同条件下分别测量试样中各元素的IiWXY和标样的同一俄歇峰强度,则如果试样中有N种元素,就需要N种纯元素标样,进行2N次测量,相当繁琐费时。但是,标样法较准,特别是用与待分析试样成分近似的合金或化合物标样。它是定量分析的基础。相对灵敏度因子法取纯银标样的主峰(351eV的MNN峰)作为标准,在相同的条件下测量纯i元素的标样与纯银标样主峰进行比较,即则Si称为i元素的“相对灵敏度因子”。各元素的Si均已测定出来,并绘制成曲线,以备使用。有了Si,则根据实测的IiWXY和以及Si可计算出xi.影响IiWXY的主要因素:A、初级电子束流Ip;B、调制能量的峰-峰值Em和锁相放大器的放大倍数L。它们的乘积,即d=IpEmL,称为刻度系数。如果测IiWXY与的刻度系数d不同,则若不计各的差异,无标样便可求得xi。假如各dj相同,可进一步简化为A、相对灵敏度因子法准确性较低,但不需标样,因而应用较广。B、杂散磁场和试样的位置误差均会强烈地影响测试结果。目前的解决办法:仪器外部的磁场采取屏蔽措施;试样位置引起的误差,对用筒镜分析器可籍弹性峰调准试样位置使误差减至最小;对用半球分析器的仪器,试样位置影响不大。例题利用俄歇电子微分谱测定304不锈钢表面成分。初级电子束能量Ep=3keV,测试结果如图所示。图上带有“*”号的几个强峰分别为Fe的703eV,强度IFe为10.1,Cr的529eV,ICr为4.7;Ni的848eV,INi为1.5。查得其相对灵敏度因子分别为SFe=0.2,SCr=0.29,SNi=0.27。解:根据式
则同理,xCr=22%;xNi=8%。12.2X射线光电子能谱早在19世纪末,就发现了光电发射现象,这一物理效应发展成今天的X射线光电子谱仪是20世纪60年代末的事情。其显著特点是不仅能测定表面除H、He以外周期表中所有的元素,而且能确定各元素的化学状态,并有很高的灵敏度,在实验时试样表面受辐照损伤小。常用MgKα(1253.6eV)和AlKα(1486.6eV)激发试样,产生的X射线光电子的平均自由程λ在0.3~2nm,是目前表面分析中使用最广的谱仪之一。基本原理用一束单色的X射线激发试样,当X射线的光子能量大于试样中原子、分子或固体中某原子轨道电子结合能EB时,原子因受激而发射电子,得到具有一定动能EK的光电子。X射线光电子谱仪原理图X射线光电子谱仪的基本组成如图所示。测试时,首先将试样引入试样室,用一束单色X射线激发试样产生光电子。根据爱因斯坦光电发射定律,有式中,h为普朗克常量;v为X射线的频率。金属铝的XPS谱图(激发源为单色AlKα)(a)扫描全谱;(b)为(a)高能端的扩展这些光电子进入能量分析器,利用能量分析器的色散作用,可获得按能量大小分布的X射线光电子谱,如图所示。应用举例以上图为例,分析这张铝的图谱,可以得到:1)由于不同元素原子各轨道电子结合能为一定值且互不重叠,只要在宽能量范围内对试样进行一次扫描,由各谱峰对应的结合能便可确定试样表面的元素组成,进行元素定性分析。如本试样表面除铝外,还有C1s和O1s两个峰存在,显然试样表面除被氧化外,还被碳污染了。2)还可利用谱峰所属面积的大小,即谱峰的强度,进行元素定量分析。3)由于化学环境不同而引起内壳层电子结合能的变化。在图谱上产生峰位移动现象,称之为化学位移。如图(b)所示,在Al2s和Al2p谱线低动能一侧都有一个肩峰出现,分别对应Al2O3中铝的2s和2p轨道电子的能量。因此,可根据内壳层电子结合能位移的大小来测定有关元素的化学状态。4)谱图中,还有铝的价带谱和等离子激元等伴峰出现,它们常同试样的电子结构密切相关,这是XPS提供的又一重要信息。如果用离子溅射剥蚀试样表面,用X射线光电子谱分析,二者交替进行,还可得到元素及其化学状态沿深度的分布。应用举例其他能谱随着技术的发展与进步,界面和相界面的研究不断伸入的今天,对表面和界面分析技术的要求也越来越高,材料科学家和表面分析专家不断地致力于这一领域的研究。低能电子衍射二次离子质谱场电子和场离子显微镜卢瑟福背散射能谱电子能耗谱等等都在材料研究中发挥着重要作用。MagneticResonanceImaging磁共振成像发生事件作者或公司磁共振发展史1946发现磁共振现象BlochPurcell1971发现肿瘤的T1、T2时间长Damadian1973做出两个充水试管MR图像Lauterbur1974活鼠的MR图像Lauterbur等1976人体胸部的MR图像Damadian1977初期的全身MR图像
Mallard1980磁共振装置商品化1989
0.15T永磁商用磁共振设备中国安科
2003诺贝尔奖金LauterburMansfierd时间MR成像基本原理实现人体磁共振成像的条件:人体内氢原子核是人体内最多的物质。最易受外加磁场的影响而发生磁共振现象(没有核辐射)有一个稳定的静磁场(磁体)梯度场和射频场:前者用于空间编码和选层,后者施加特定频率的射频脉冲,使之形成磁共振现象信号接收装置:各种线圈计算机系统:完成信号采集、传输、图像重建、后处理等
人体内的H核子可看作是自旋状态下的小星球。自然状态下,H核进动杂乱无章,磁性相互抵消zMyx进入静磁场后,H核磁矩发生规律性排列(正负方向),正负方向的磁矢量相互抵消后,少数正向排列(低能态)的H核合成总磁化矢量M,即为MR信号基础ZZYYXB0XMZMXYA:施加90度RF脉冲前的磁化矢量MzB:施加90度RF脉冲后的磁化矢量Mxy.并以Larmor频率横向施进C:90度脉冲对磁化矢量的作用。即M以螺旋运动的形式倾倒到横向平面ABC在这一过程中,产生能量
三、弛豫(Relaxation)回复“自由”的过程
1.
纵向弛豫(T1弛豫):
M0(MZ)的恢复,“量变”高能态1H→低能态1H自旋—晶格弛豫、热弛豫
吸收RF光子能量(共振)低能态1H高能态1H
放出能量(光子,MRS)T1弛豫时间:
MZ恢复到M0的2/3所需的时间
T1愈小、M0恢复愈快T2弛豫时间:MXY丧失2/3所需的时间;T2愈大、同相位时间长MXY持续时间愈长MXY与ST1加权成像、T2加权成像
所谓的加权就是“突出”的意思
T1加权成像(T1WI)----突出组织T1弛豫(纵向弛豫)差别
T2加权成像(T2WI)----突出组织T2弛豫(横向弛豫)差别。
磁共振诊断基于此两种标准图像磁共振常规h检查必扫这两种标准图像.T1的长度在数百至数千毫秒(ms)范围T2值的长度在数十至数千毫秒(ms)范围
在同一个驰豫过程中,T2比T1短得多
如何观看MR图像:首先我们要分清图像上的各种标示。分清扫描序列、扫描部位、扫描层面。正常或异常的所在部位---即在同一层面观察、分析T1、T2加权像上信号改变。绝大部分病变T1WI是低信号、T2WI是高信号改变。只要熟悉扫描部位正常组织结构的信号表现,通常病变与正常组织不会混淆。一般的规律是T1WI看解剖,T2WI看病变。磁共振成像技术--图像空间分辨力,对比分辨力一、如何确定MRI的来源(一)层面的选择1.MXY产生(1H共振)条件
RF=ω=γB02.梯度磁场Z(GZ)
GZ→B0→ω
不同频率的RF
特定层面1H激励、共振
3.层厚的影响因素
RF的带宽↓
GZ的强度↑层厚↓〈二〉体素信号的确定1、频率编码2、相位编码
M0↑--GZ、RF→相应层面MXY----------GY→沿Y方向1H有不同ω
各1H同相位MXY旋进速度不同同频率一定时间后→→GX→沿X方向1H有不同ω沿Y方向不同1H的MXYMXY旋进频率不同位置不同(相位不同)〈三〉空间定位及傅立叶转换
GZ----某一层面产生MXYGX----MXY旋进频率不同
GY----MXY旋进相位不同(不影响MXY大小)
↓某一层面不同的体素,有不同频率、相位
MRS(FID)第三节、磁共振检查技术检查技术产生图像的序列名产生图像的脉冲序列技术名TRA、COR、SAGT1WT2WSETR、TE…….梯度回波FFE快速自旋回波FSE压脂压水MRA短TR短TE--T1W长TR长TE--T2W增强MR最常用的技术是:多层、多回波的SE(spinecho,自旋回波)技术磁共振扫描时间参数:TR、TE磁共振扫描还有许多其他参数:层厚、层距、层数、矩阵等序列常规序列自旋回波(SE),快速自旋回波(FSE)梯度回波(FE)反转恢复(IR),脂肪抑制(STIR)、水抑制(FLAIR)高级序列水成像(MRCP,MRU,MRM)血管造影(MRA,TOF2D/3D)三维成像(SPGR)弥散成像(DWI)关节运动分析是一种成像技术而非扫描序列自旋回波(SE)必扫序列图像清晰显示解剖结构目前只用于T1加权像快速自旋回波(FSE)必扫序列成像速度快多用于T2加权像梯度回波(GE)成像速度快对出血敏感T2加权像水抑制反转恢复(IR)水抑制(FLAIR)抑制自由水梗塞灶显示清晰判断病灶成份脂肪抑制反转恢复(IR)脂肪抑制(STIR)抑制脂肪信号判断病灶成分其它组织显示更清晰血管造影(MRA)无需造影剂TOF法PC法MIP投影动静脉分开显示水成像(MRCP,MRU,MRM)含水管道系统成像胆道MRCP泌尿路MRU椎管MRM主要用于诊断梗阻扩张超高空间分辨率扫描任意方位重建窄间距重建技术大大提高对小器官、小病灶的诊断能力三维梯度回波(SPGR) 早期诊断脑梗塞
弥散成像MRI的设备一、信号的产生、探测接受1.磁体(Magnet):静磁场B0(Tesla,T)→组织净磁矩M0
永磁型(permanentmagnet)常导型(resistivemagnet)超导型(superconductingmagnet)磁体屏蔽(magnetshielding)2.梯度线圈(gradientcoil):
形成X、Y、Z轴的磁场梯度功率、切换率3.射频系统(radio-frequencesystem,RF)
MR信号接收二、信号的处理和图象显示数模转换、计算机,等等;MRI技术的优势1、软组织分辨力强(判断组织特性)2、多方位成像3、流空效应(显示血管)4、无骨骼伪影5、无电离辐射,无碘过敏6、不断有新的成像技术MRI技术的禁忌证和限度1.禁忌证
体内弹片、金属异物各种金属置入:固定假牙、起搏器、血管夹、人造关节、支架等危重病人的生命监护系统、维持系统不能合作病人,早期妊娠,高热及散热障碍2.其他钙化显示相对较差空间分辨较差(体部,较同等CT)费用昂贵多数MR机检查时间较长1.病人必须去除一切金属物品,最好更衣,以免金属物被吸入磁体而影响磁场均匀度,甚或伤及病人。2.扫描过程中病人身体(皮肤)不要直接触碰磁体内壁及各种导线,防止病人灼伤。3.纹身(纹眉)、化妆品、染发等应事先去掉,因其可能会引起灼伤。4.病人应带耳塞,以防听力损伤。扫描注意事项颅脑MRI适应症颅内良恶性占位病变脑血管性疾病梗死、出血、动脉瘤、动静脉畸形(AVM)等颅脑外伤性疾病脑挫裂伤、外伤性颅内血肿等感染性疾病脑脓肿、化脓性脑膜炎、病毒性脑炎、结核等脱髓鞘性或变性类疾病多发性硬化(MS)等先天性畸形胼胝体发育不良、小脑扁桃体下疝畸形等脊柱和脊髓MRI适应证1.肿瘤性病变椎管类肿瘤(髓内、髓外硬膜内、硬膜外),椎骨肿瘤(转移性、原发性)2.炎症性疾病脊椎结核、骨髓炎、椎间盘感染、硬膜外脓肿、蛛网膜炎、脊髓炎等3.外伤骨折、脱位、椎间盘突出、椎管内血肿、脊髓损伤等4.脊柱退行性变和椎管狭窄症椎间盘变性、膨隆、突出、游离,各种原因椎管狭窄,术后改变,5.脊髓血管畸形和血管瘤6.脊髓脱髓鞘疾病(如MS),脊髓萎缩7.先天性畸形胸部MRI适应证呼吸系统对纵隔及肺门区病变显示良好,对肺部结构显示不如CT。胸廓入口病变及其上下比邻关系纵隔肿瘤和囊肿及其与大血管的关系其他较CT无明显优越性心脏及大血管大血管病变各类动脉瘤、腔静脉血栓等心脏及心包肿瘤,心包其他病变其他(如先心、各种心肌病等)较超声心动图无优势,应用不广腹部MRI适应证主要用于部分实质性器官的肿瘤性病变肝肿瘤性病变,提供鉴别信息胰腺肿瘤,有利小胰癌、胰岛细胞癌显示宫颈、宫体良恶性肿瘤及分期等,先天畸形肿瘤的定位(脏器上下缘附近)、分期胆道、尿路梗阻和肿瘤,MRCP,MRU直肠肿瘤骨与关节MRI适应证X线及CT的后续检查手段--钙质显示差和空间分辨力部分情况可作首选:1.累及骨髓改变的骨病(早期骨缺血性坏死,早期骨髓炎、骨髓肿瘤或侵犯骨髓的肿瘤)2.结构复杂关节的损伤(膝、髋关节)3.形状复杂部位的检查(脊柱、骨盆等)软件登录界面软件扫描界面图像浏览界面胶片打印界面报告界面报告界面2合理应用抗菌药物预防手术部位感染概述外科手术部位感染的2/3发生在切口医疗费用的增加病人满意度下降导致感染、止血和疼痛一直是外科的三大挑战,止血和疼痛目前已较好解决感染仍是外科医生面临的重大问题,处理不当,将产生严重后果外科手术部位感染占院内感染的14%~16%,仅次于呼吸道感染和泌尿道感染,居院内感染第3位严重手术部位的感染——病人的灾难,医生的梦魇
预防手术部位感染(surgicalsiteinfection,SSI)
手术部位感染的40%–60%可以预防围手术期使用抗菌药物的目的外科医生的困惑★围手术期应用抗生素是预防什么感染?★哪些情况需要抗生素预防?★怎样选择抗生素?★什么时候开始用药?★抗生素要用多长时间?定义:指发生在切口或手术深部器官或腔隙的感染分类:切口浅部感染切口深部感染器官/腔隙感染一、SSI定义和分类二、SSI诊断标准——切口浅部感染
指术后30天内发生、仅累及皮肤及皮下组织的感染,并至少具备下述情况之一者:
1.切口浅层有脓性分泌物
2.切口浅层分泌物培养出细菌
3.具有下列症状体征之一:红热,肿胀,疼痛或压痛,因而医师将切口开放者(如培养阴性则不算感染)
4.由外科医师诊断为切口浅部SSI
注意:缝线脓点及戳孔周围感染不列为手术部位感染二、SSI诊断标准——切口深部感染
指术后30天内(如有人工植入物则为术后1年内)发生、累及切口深部筋膜及肌层的感染,并至少具备下述情况之一者:
1.切口深部流出脓液
2.切口深部自行裂开或由医师主动打开,且具备下列症状体征之一:①体温>38℃;②局部疼痛或压痛
3.临床或经手术或病理组织学或影像学诊断,发现切口深部有脓肿
4.外科医师诊断为切口深部感染
注意:感染同时累及切口浅部及深部者,应列为深部感染
二、SSI诊断标准—器官/腔隙感染
指术后30天内(如有人工植入物★则术后1年内)、发生在手术曾涉及部位的器官或腔隙的感染,通过手术打开或其他手术处理,并至少具备以下情况之一者:
1.放置于器官/腔隙的引流管有脓性引流物
2.器官/腔隙的液体或组织培养有致病菌
3.经手术或病理组织学或影像学诊断器官/腔隙有脓肿
4.外科医师诊断为器官/腔隙感染
★人工植入物:指人工心脏瓣膜、人工血管、人工关节等二、SSI诊断标准—器官/腔隙感染
不同种类手术部位的器官/腔隙感染有:
腹部:腹腔内感染(腹膜炎,腹腔脓肿)生殖道:子宫内膜炎、盆腔炎、盆腔脓肿血管:静脉或动脉感染三、SSI的发生率美国1986年~1996年593344例手术中,发生SSI15523次,占2.62%英国1997年~2001年152所医院报告在74734例手术中,发生SSI3151例,占4.22%中国?SSI占院内感染的14~16%,仅次于呼吸道感染和泌尿道感染三、SSI的发生率SSI与部位:非腹部手术为2%~5%腹部手术可高达20%SSI与病人:入住ICU的机会增加60%再次入院的机会是未感染者的5倍SSI与切口类型:清洁伤口 1%~2%清洁有植入物 <5%可染伤口<10%手术类别手术数SSI数感染率(%)小肠手术6466610.2大肠手术7116919.7子宫切除术71271722.4肝、胆管、胰手术1201512.5胆囊切除术8222.4不同种类手术的SSI发生率:三、SSI的发生率手术类别SSI数SSI类别(%)切口浅部切口深部器官/腔隙小肠手术6652.335.412.3大肠手术69158.426.315.3子宫切除术17278.813.57.6骨折开放复位12379.712.28.1不同种类手术的SSI类别:三、SSI的发生率延迟愈合疝内脏膨出脓肿,瘘形成。需要进一步处理这里感染将导致:延迟愈合疝内脏膨出脓肿、瘘形成需进一步处理四、SSI的后果四、SSI的后果在一些重大手术,器官/腔隙感染可占到1/3。SSI病人死亡的77%与感染有关,其中90%是器官/腔隙严重感染
——InfectControlandHospEpidemiol,1999,20(40:247-280SSI的死亡率是未感染者的2倍五、导致SSI的危险因素(1)病人因素:高龄、营养不良、糖尿病、肥胖、吸烟、其他部位有感染灶、已有细菌定植、免疫低下、低氧血症五、导致SSI的危险因素(2)术前因素:术前住院时间过长用剃刀剃毛、剃毛过早手术野卫生状况差(术前未很好沐浴)对有指征者未用抗生素预防五、导致SSI的危险因素(3)手术因素:手术时间长、术中发生明显污染置入人工材料、组织创伤大止血不彻底、局部积血积液存在死腔和/或失活组织留置引流术中低血压、大量输血刷手不彻底、消毒液使用不当器械敷料灭菌不彻底等手术特定时间是指在大量同种手术中处于第75百分位的手术持续时间其因手术种类不同而存在差异超过T越多,SSI机会越大五、导致SSI的危险因素(4)SSI危险指数(美国国家医院感染监测系统制定):病人术前已有≥3种危险因素污染或污秽的手术切口手术持续时间超过该类手术的特定时间(T)
(或一般手术>2h)六、预防SSI干预方法根据指南使用预防性抗菌药物正确脱毛方法缩短术前住院时间维持手术患者的正常体温血糖控制氧疗抗菌素的预防/治疗预防
在污染细菌接触宿主手术部位前给药治疗
在污染细菌接触宿主手术部位后给药
防患于未然六、预防SSI干预方法
——抗菌药物的应用147预防和治疗性抗菌素使用目的:清洁手术:防止可能的外源污染可染手术:减少粘膜定植细菌的数量污染手术:清除已经污染宿主的细菌六、预防SSI干预方法
——抗菌药物的应用148需植入假体,心脏手术、神外手术、血管外科手术等六、预防SSI干预方法
——抗菌药物的应用预防性抗菌素使用指征:可染伤口(Clean-contaminatedwound)污染伤口(Contaminatedwound)清洁伤口(Cleanwound)但存在感染风险六、预防SSI干预方法
——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?六、预防SSI干预方法
——抗菌药物的应用预防性抗菌素显示有效的手术有:妇产科手术胃肠道手术(包括阑尾炎)口咽部手术腹部和肢体血管手术心脏手术骨科假体植入术开颅手术某些“清洁”手术六、预防SSI干预方法
——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?六、预防SSI干预方法
——抗菌药物的应用
理想的给药时间?目前还没有明确的证据表明最佳的给药时机研究显示:切皮前45~75min给药,SSI发生率最低,且不建议在切皮前30min内给药影响给药时间的因素:所选药物的代谢动力学特性手术中污染发生的可能时间病人的循环动力学状态止血带的使用剖宫产细菌在手术伤口接种后的生长动力学
手术过程
012345671hr2hrs6hrs1day3-5days细菌数logCFU/ml六、预防SSI干预方法
——抗菌药物的应用154术后给药,细菌在手术伤口接种的生长动力学无改变
手术过程抗生素血肿血浆六、预防SSI干预方法
——抗菌药物的应用Antibioticsinclot
手术过程
血浆中抗生素予以抗生素血块中抗生素血浆术前给药,可以有效抑制细菌在手术伤口的生长六、预防SSI干预方法
——抗菌药物的应用156ClassenDC,etal..NEnglJMed1992;326:281切开前时间切开后时间予以抗生素切开六、预防SSI干预方法
——抗菌药物的应用不同给药时间,手术伤口的感染率不同NEJM1992;326:281-6投药时间感染数(%)相对危险度(95%CI)早期(切皮前2-24h)36914(3.8%)6.7(2.9-14.7)4.3手术前(切皮前45-75min)170810(0.9%)1.0围手术期(切皮后3h内)2824(1.4%)2.4(0.9-7.9) 2.1手术后(切皮3h以上)48816(3.3%)5.8(2.6-12.3)
5.8全部284744(1.5%)似然比病人数六、预防SSI干预方法
——抗菌药物的应用结论:抗生素在切皮前45-75min或麻醉诱导开始时给药,预防SSI效果好158六、预防SSI干预方法
——抗菌药物的应用切口切开后,局部抗生素分布将受阻必须在切口切开前给药!!!抗菌素应在切皮前45~75min给药六、预防SSI干预方法
——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?有效安全杀菌剂半衰期长相对窄谱廉价六、预防SSI干预方法
——抗菌药物的应用抗生素的选择原则:各类手术最易引起SSI的病原菌及预防用药选择六、预防SSI干预方法
——抗菌药物的应用
手术最可能的病原菌预防用药选择胆道手术革兰阴性杆菌,厌氧菌头孢呋辛或头孢哌酮或
(如脆弱类杆菌)头孢曲松阑尾手术革兰阴性杆菌,厌氧菌头孢呋辛或头孢噻肟;
(如脆弱类杆菌)+甲硝唑结、直肠手术革兰阴性杆菌,厌氧菌头孢呋辛或头孢曲松或
(如脆弱类杆菌)头孢噻肟;+甲硝唑泌尿外科手术革兰阴性杆菌头孢呋辛;环丙沙星妇产科手术革兰阴性杆菌,肠球菌头孢呋辛或头孢曲松或
B族链球菌,厌氧菌头孢噻肟;+甲硝唑莫西沙星(可单药应用)注:各种手术切口感染都可能由葡萄球菌引起六、预防SSI干预方法
——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?六、预防SSI干预方法
——抗菌药物的应用单次给药还是多次给药?没有证据显示多次给药比单次给药好伤口关闭后给药没有益处多数指南建议24小时内停药没有必要维持抗菌素治疗直到撤除尿管和引流管手术时间延长或术中出血量较大时可重复给药细菌污染定植感染一次性用药用药24h用药4872h数小时从十数小时到数十小时六、预防SSI干预方法
——抗菌药物的应用用药时机不同,用药期限也应不同短时间预防性应用抗生素的优点:六、预防SSI干预方法
——抗菌药物的应用减少毒副作用不易产生耐药菌株不易引起微生态紊乱减轻病人负担可以选用单价较高但效果较好的抗生素减少护理工作量药品消耗增加抗菌素相关并发症增加耐药抗菌素种类增加易引起脆弱芽孢杆菌肠炎MRSA(耐甲氧西林金黄色葡萄球菌)定植六、预防SSI干预方法
——抗菌药物的应用延长抗菌素使用的缺点:六、预防SSI干预方法
——抗菌药物的应用外科预防性抗生素的应用:预防性抗生素对哪些病人有用?什么时候开始用药?抗生素种类选择?使用单次还是多次?采用怎样的给药途径?正确的给药方法:六、预防SSI干预方法
——抗菌药物的应用应静脉给药,2030min滴完肌注、口服存在吸收上的个体差异,不能保证血液和组织的药物浓度,不宜采用常用的-内酰胺类抗生素半衰期为12h,若手术超过34h,应给第2个剂量,必要时还可用第3次可能有损伤肠管的手术,术前用抗菌药物准备肠道局部抗生素冲洗创腔或伤口无确切预防效果,不予提倡不应将日常全身性应用的抗生素应用于伤口局部(诱发高耐药)必要时可用新霉素、杆菌肽等抗生素缓释系统(PMMA—青大霉素骨水泥或胶原海绵)局部应用可能有一定益处六、预防SSI干预方法
——抗菌药物的应用不提倡局部预防应用抗生素:时机不当时间太长选药不当,缺乏针对性六、预防SSI干预方法
——抗菌药物的应用预防用药易犯的错误:在开刀前45-75min之内投药按最新临床指南选药术后24小时内停药择期手术后一般无须继续使用抗生素大量对比研究证明,手术后继续用药数次或数天并不能降低手术后感染率若病人有明显感染高危因素或使用人工植入物,可再用1次或数次小结预防SSI干预方法
——正确的脱毛方法用脱毛剂、术前即刻备皮可有效减少SSI的发生手术部位脱毛方法与切口感染率的关系:备皮方法 剃毛备皮 5.6%
脱毛0.6%备皮时间 术前24小时前 >20%
术前24小时内 7.1%
术前即刻 3.1%方法/时间 术前即刻剪毛 1.8%
前1晚剪/剃毛 4.0%THANKYOUMagneticResonanceImagingPART01磁共振成像发生事件作者或公司磁共振发展史1946发现磁共振现象BlochPurcell1971发现肿瘤的T1、T2时间长Damadian1973做出两个充水试管MR图像Lauterbur1974活鼠的MR图像Lauterbur等1976人体胸部的MR图像Damadian1977初期的全身MR图像
Mallard1980磁共振装置商品化1989
0.15T永磁商用磁共振设备中国安科
2003诺贝尔奖金LauterburMansfierd时间PART02MR成像基本原理实现人体磁共振成像的条件:人体内氢原子核是人体内最多的物质。最易受外加磁场的影响而发生磁共振现象(没有核辐射)有一个稳定的静磁场(磁体)梯度场和射频场:前者用于空间编码和选层,后者施加特定频率的射频脉冲,使之形成磁共振现象信号接收装置:各种线圈计算机系统:完成信号采集、传输、图像重建、后处理等
人体内的H核子可看作是自旋状态下的小星球。自然状态下,H核进动杂乱无章,磁性相互抵消zMyx进入静磁场后,H核磁矩发生规律性排列(正负方向),正负方向的磁矢量相互抵消后,少数正向排列(低能态)的H核合成总磁化矢量M,即为MR信号基础ZZYYXB0XMZMXYA:施加90度RF脉冲前的磁化矢量MzB:施加90度RF脉冲后的磁化矢量Mxy.并以Larmor频率横向施进C:90度脉冲对磁化矢量的作用。即M以螺旋运动的形式倾倒到横向平面ABC在这一过程中,产生能量
三、弛豫(Relaxation)回复“自由”的过程
1.
纵向弛豫(T1弛豫):
M0(MZ)的恢复,“量变”高能态1H→低能态1H自旋—晶格弛豫、热弛豫
吸收RF光子能量(共振)低能态1H高能态1H
放出能量(光子,MRS)T1弛豫时间:
MZ恢复到M0的2/3所需的时间
T1愈小、M0恢复愈快T2弛豫时间:MXY丧失2/3所需的时间;T2愈大、同相位时间长MXY持续时间愈长MXY与ST1加权成像、T2加权成像
所谓的加权就是“突出”的意思
T1加权成像(T1WI)----突出组织T1弛豫(纵向弛豫)差别
T2加权成像(T2WI)----突出组织T2弛豫(横向弛豫)差别。
磁共振诊断基于此两种标准图像磁共振常规h检查必扫这两种标准图像.T1的长度在数百至数千毫秒(ms)范围T2值的长度在数十至数千毫秒(ms)范围
在同一个驰豫过程中,T2比T1短得多
如何观看MR图像:首先我们要分清图像上的各种标示。分清扫描序列、扫描部位、扫描层面。正常或异常的所在部位---即在同一层面观察、分析T1、T2加权像上信号改变。绝大部分病变T1WI是低信号、T2WI是高信号改变。只要熟悉扫描部位正常组织结构的信号表现,通常病变与正常组织不会混淆。一般的规律是T1WI看解剖,T2WI看病变。磁共振成像技术--图像空间分辨力,对比分辨力一、如何确定MRI的来源(一)层面的选择1.MXY产生(1H共振)条件
RF=ω=γB02.梯度磁场Z(GZ)
GZ→B0→ω
不同频率的RF
特定层面1H激励、共振
3.层厚的影响因素
RF的带宽↓
GZ的强度↑层厚↓〈二〉体素信号的确定1、频率编码2、相位编码
M0↑--GZ、RF→相应层面MXY----------GY→沿Y方向1H有不同ω
各1H同相位MXY旋进速度不同同频率一定时间后→→GX→沿X方向1H有不同ω沿Y方向不同1H的MXYMXY旋进频率不同位置不同(相位不同)〈三〉空间定位及傅立叶转换
GZ----某一层面产生MXYGX----MXY旋进频率不同
GY----MXY旋进相位不同(不影响MXY大小)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业活动融资行业营销策略方案
- 扫描探针显微镜产业链招商引资的调研报告
- 去中心化身份认证服务行业市场调研分析报告
- 园艺学行业营销策略方案
- 家用空间降温装置出租行业营销策略方案
- 装钓鱼假饵用盒市场发展前景分析及供需格局研究预测报告
- 离心压缩机产品供应链分析
- 机械式起重葫芦产品供应链分析
- 动物清洁行业经营分析报告
- 美容霜市场分析及投资价值研究报告
- 上海交通大学硕博研究生组会文献汇报模板
- 人教版2024-2025学年度九年级上册数学第二十二章(二次函数)单元测试卷
- 红色教育研学方案设计(3篇模板)
- 个体户退股协议书范本版
- 当代社会政策分析 课件 第四章 教育社会政策
- 生殖微创中冷刀宫腔镜的临床应用
- 机场能源管理综合方案
- 故事绘本仓颉造字
- 健康饮食:糖尿病防治资料
- 汽车电器DFMEA-车载终端
- 2024年职业病宣传周知识竞赛考试题库350题(含答案)
评论
0/150
提交评论