2023年重庆市实验外国语学校高二数学第二学期期末学业水平测试试题含解析_第1页
2023年重庆市实验外国语学校高二数学第二学期期末学业水平测试试题含解析_第2页
2023年重庆市实验外国语学校高二数学第二学期期末学业水平测试试题含解析_第3页
2023年重庆市实验外国语学校高二数学第二学期期末学业水平测试试题含解析_第4页
2023年重庆市实验外国语学校高二数学第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线y=上一点M到x轴的距离为d1,到直线=1的距离为d2,则d1+d2的最小值为()A. B. C.3 D.22.函数,则在点处的切线方程为()A. B. C. D.3.已知定义在R上的函数f(x)的导函数为f'(x),若f(x)+fA.(-∞,0) B.(0,+∞) C.(-∞,1) D.(1,+∞)4.在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并且有99%以上的把握认为这个结论是成立的,则下列说法中正确的是.A.100个吸烟者中至少有99人患有肺癌B.1个人吸烟,那么这人有99%的概率患有肺癌C.在100个吸烟者中一定有患肺癌的人D.在100个吸烟者中可能一个患肺癌的人也没有5.在一项调查中有两个变量x(单位:千元)和y(单位:t),如图是由这两个变量近8年来的取值数据得到的散点图,那么适宜作为y关于x的回归方程类型的是()A.y=a+bx B.y=c+d C.y=m+nx2 D.y=p+qex(q>0)6.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有A.60种 B.63种 C.65种 D.66种7.已知,是两个不同的平面,,是异面直线且,则下列条件能推出的是()A., B., C., D.,8.已知命题:“,有成立”,则命题为()A.,有成立 B.,有成立C.,有成立 D.,有成立9.已知函数,若,则()A.0 B.3 C.6 D.910.设函数,()A.3 B.6 C.9 D.1211.已知复数满足(其中为虚数单位),则()A.1 B.2 C. D.12.平面内平行于同一直线的两直线平行,由类比思维,我们可以得到()A.空间中平行于同一直线的两直线平行B.空间中平行于同一平面的两直线平行C.空间中平行于同一直线的两平面平行D.空间中平行于同一平面的两平面平行二、填空题:本题共4小题,每小题5分,共20分。13.已知离散型随机变量服从正态分布,且,则____.14.,,则__________.15.展开式中的常数项为__________.16.若双曲线的两条渐近线与抛物线的准线围成的三角形面积为,则双曲线的离心率为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某学校研究性学习小组调查学生使用智能手机对学习成绩的影响,部分统计数据如下表:使用智能手机不使用智能手机总计学习成绩优秀4812学习成绩不优秀16218总计201030(Ⅰ)根据以上列联表判断,能否在犯错误的概率不超过0.005的前提下认为使用智能手机对学习成绩有影响?(Ⅱ)从学习成绩优秀的12名同学中,随机抽取2名同学,求抽到不使用智能手机的人数的分布列及数学期望.参考公式:,其中参考数据:0.050,。0250.0100.0050.0013.8415.0246.6357.87910.82818.(12分)已知函数.(1)当时,解不等式;(2)若不等式有实数解,求实数a的取值范围.19.(12分)甲,乙两人进行射击比赛,各射击局,每局射击次,射击中目标得分,未命中目标得分,两人局的得分情况如下:甲乙(1)若从甲的局比赛中,随机选取局,求这局的得分恰好相等的概率;(2)从甲,乙两人的局比赛中随机各选取局,记这局的得分和为,求的分布列和数学期望.20.(12分)已知函数,.(Ⅰ)当时,证明:;(Ⅱ)的图象与的图象是否存在公切线(公切线:同时与两条曲线相切的直线)?如果存在,有几条公切线,请证明你的结论.21.(12分)已知矩阵.(1)求;(2)求矩阵的特征值和特征向量.22.(10分)已知的内角A的大小为,面积为.(1)若,求的另外两条边长;(2)设O为的外心,当时,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】

根据抛物线的定义,将的最小值转化为抛物线焦点到直线的距离减1来求解.【详解】根据题意的最小值等于抛物线焦点到直线的距离减1,而焦点为故,故选D.【点睛】本小题主要考查抛物线的定义,考查点到直线的距离公式,考查化归与转化的数学思想方法,属于基础题.2、A【解析】分析:先求导数,根据导数几何意义得切线斜率,再根据点斜式求切线方程.详解:因为,所以所以切线方程为选A.点睛:求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.3、B【解析】

不等式的exfx<1的解集等价于函数g(x)=exf(x)图像在y=1下方的部分对应的x的取值集合,那就需要对函数g(x)=exf(x)的性质进行研究,将fx+f'x【详解】解:令g(x)=因为f所以,(故g故gx在R又因为f所以,g所以当x>0,gx<1,即e故选B.【点睛】不等式问题往往可以转化为函数图像问题求解,函数图像问题有时借助函数的性质(奇偶性、单调性等)进行研究,有时还需要构造新的函数.4、D【解析】独立性检验是判断两个分类变量是否有关;吸烟与患肺癌是两个分类变量,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并且有以上的把握认为这个结论是成立的.指的是得出“吸烟与患肺癌有关”这个结论正确的概率超过99%,即作出“吸烟与患肺癌有关”这个结论犯错的概率不超过1%;不能作为判断吸烟人群中有多少人患肺癌,以及1个人吸烟,这个人患有肺癌的概率的依据.故选D5、B【解析】散点图呈曲线,排除选项,且增长速度变慢,排除选项,故选.6、D【解析】试题分析:要得到四个数字的和是偶数,需要分成三种不同的情况,当取得个偶数时,有种结果,当取得个奇数时,有种结果,当取得奇偶时有种结果,共有种结果.故答案为D.考点:分类计数原理.7、D【解析】分析:根据线面垂直的判定定理求解即可.详解:A.,,此时,两平面可以平行,故错误;B.,,此时,两平面可以平行,故错误;C.,,此时,两平面仍可以平行,故错误,故综合的选D.点睛:考查线面垂直的判定,对答案对角度,多立体的想象摆放图形是解题关键,属于中档题.8、B【解析】

特称命题的否定是全称命题。【详解】特称命题的否定是全称命题,所以,有成立的否定是,有成立,故选B.【点睛】本题考查特称命题的否定命题,属于基础题。9、C【解析】

分别讨论当和时带入即可得出,从而得出【详解】当时(舍弃).当时,所以,所以选择C【点睛】本题主要考查了分段函数求值的问题,分段函数问题需根据函数分段情况进行讨论,属于基础题.10、C【解析】.故选C.11、D【解析】

先求出复数z,然后根据公式,求出复数的模即可.【详解】,,.故选D.【点睛】本题主要考查复数的模计算,较基础.12、D【解析】

由平面中的线类比空间中的面即可得解。【详解】平面内平行于同一直线的两直线平行,由类比方法得:空间中平行于同一平面的两平面平行.故选:D【点睛】本题主要考查了类比推理,考查平面中的线类比空间中的面知识,属于基础题。二、填空题:本题共4小题,每小题5分,共20分。13、【解析】∵随机变量X服从正态分布,∴μ=1,得对称轴是x=1.∵,∴P(1<ξ<3)==0.468,∴P(1<ξ<3)=0.468=.故答案为.点睛:关于正态曲线在某个区间内取值的概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-1σ<X≤μ+1σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正态曲线的对称性和曲线与x轴之间面积为1.14、2【解析】分析:由,可得,直接利用对数运算法则求解即可得,计算过程注意避免计算错误.详解:由,可得,则,故答案为.点睛:本题主要考查指数与对数的互化以及对数的运算法则,意在考查对基本概念与基本运算掌握的熟练程度.15、24【解析】分析:由题意,求得二项式的展开式的通项为,即可求解答案.详解:由题意,二项式的展开式的通项为,令,则.点睛:本题主要考查了二项式定理的应用,其中熟记二项展开式的通项公式是解答的关键,着重考查了推理与运算能力.16、【解析】

求解出双曲线渐近线和抛物线准线的交点,利用三角形面积构造方程可求得,利用双曲线的关系和即可求得离心率.【详解】由双曲线方程可得渐近线方程为:由抛物线方程可得准线方程为:可解得渐近线和准线的交点坐标为:,解得:本题正确结果:【点睛】本题考查双曲线离心率的求解问题,关键是能够利用三角形面积构造方程,得到之间关系,进而得到之间的关系.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析.【解析】分析:(1)由列联表和卡方的计算公式,得的字,即可作出判断;(2)根据题意,可取的值为,求解随机变量取每个值的概率,列出分布列,利用期望的公式即可求解数学期望.详解:(1)由列联表可得所以能在犯错误的概率不超过的前提下认为使用智能手机对学习有影响.(2)根据题意,可取的值为,,.,,所以的分布列是的数学期望是.点睛:本题主要考查了独立性检验的应用和随机变量的分布列和数学期望,解答本题,首先要准确独立性检验的计算公式作出准确计算,利用组合数的公式求解随机变量的取值对应的概率,得到分布列和求得数学期望,本题属中等难度的题目,计算量不是很大,能很好的考查考生数学应用意识、基本运算求解能力等.18、(1)(2)【解析】试题分析:(1)将绝对值不等式两边平方可得不等式的解集为(2)将原问题转化为,结合绝对值不等式的性质可得实数a的取值范围是.试题解析:(1)依题意得,两边平方整理得解得或,故原不等式的解集为(2)依题意,存在使得不等式成立,∴∵,∴,∴19、(1);(2)分布列见解析,【解析】

(1)求出基本事件总数,这2局的得分恰好相等包含的基本事件个数.由此能求出这2局的得分恰好相等的概率;

(2)甲,乙两人的4局比赛中随机各选取1局,记这2局的得分和为X,分别求出相应的概率,由此能求出X的分布列和数学期望.【详解】解:(1)从甲的4局比赛中,随机选取2局,

基本事件总数,

这2局的得分恰好相等包含的基本事件个数.

∴这2局的得分恰好相等的概率;

(2)甲,乙两人的4局比赛中随机各选取1局,记这2局的得分和为X,

则X的可能取值为13,15,16,18,

∴X的分布列为:

∴X的数学期望为.【点睛】本题考查概率的求法,考查离散型随机变量的分布列、数学期望的求法,考查相互独立事件概率计算公式等基础知识,是中档题.20、(Ⅰ)见解析(Ⅱ)曲线y=f(x),y=g(x)公切线的条数是2条,证明见解析【解析】

(Ⅰ)当x>0时,设h(x)=g(x)﹣x=lnx﹣x,设l(x)=f(x)﹣x=ex﹣x,分别求得导数和单调性、最值,即可得证;(Ⅱ)先确定曲线y=f(x),y=g(x)公切线的条数,设出切点坐标并求出两个函数导数,根据导数的几何意义列出方程组,先化简方程得lnm﹣1.分别作出y=lnx﹣1和y的函数图象,通过图象的交点个数来判断方程的解的个数,即可得到所求结论.【详解】(Ⅰ)当x>0时,设h(x)=g(x)﹣x=lnx﹣x,h′(x)1,当x>1时,h′(x)<0,h(x)递减;0<x<1时,h′(x)>0,h(x)递增;可得h(x)在x=1处取得最大值﹣1,可得h(x)≤﹣1<0;设l(x)=f(x)﹣x=ex﹣x,l′(x)=ex﹣1,当x>0时,l′(x)>0,l(x)递增;可得l(x)>l(0)=1>0,综上可得当x>0时,g(x)<x<f(x);(Ⅱ)曲线y=f(x),y=g(x)公切线的条数是2,证明如下:设公切线与g(x)=lnx,f(x)=ex的切点分别为(m,lnm),(n,en),m≠n,∵g′(x),f′(x)=ex,可得,化简得(m﹣1)lnm=m+1,当m=1时,(m﹣1)lnm=m+1不成立;当m≠1时,(m﹣1)lnm=m+1化为lnm,由lnx1,即lnx﹣1.分别作出y=lnx﹣1和y的函数图象,由图象可知:y=lnx﹣1和y的函数图象有两个交点,可得方程lnm有两个实根,则曲线y=f(x),y=g(x)公切线的条数是2条.【点睛】本题考查导数的运用:求切线的斜率和单调性、极值和最值,考查方程与构造函数法和数形结合思想,考查化简运算能力,属于较难题.21、(1)(2)特征值为,,分别对应特征向量,.【解析】

(1)利用矩阵的乘法求得结果;(2)先根据特征值的定义列出特征多项式,令,解方程可得特征值,再由特征值列出方程组求出相应的特征向量.【详解】(1)(2)矩阵的特征多项式,令得,时,,解得,取得时,解得,取得∴矩阵的特征值为,,分别对应特征向

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论