2023年浙江省共美联盟数学高二第二学期期末综合测试模拟试题含解析_第1页
2023年浙江省共美联盟数学高二第二学期期末综合测试模拟试题含解析_第2页
2023年浙江省共美联盟数学高二第二学期期末综合测试模拟试题含解析_第3页
2023年浙江省共美联盟数学高二第二学期期末综合测试模拟试题含解析_第4页
2023年浙江省共美联盟数学高二第二学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知正三棱锥的外接球的半径为,且满足则正三棱锥的体积为()A. B. C. D.2.已知函数有三个不同的零点(其中),则的值为()A. B. C. D.13.甲、乙、丙、丁、戊五人站成一排,要求甲、乙均不与丙相邻,则不同的排法种数为()A.72种 B.52种 C.36种 D.24种4.一个盒子里装有大小、形状、质地相同的12个球,其中黄球5个,蓝球4个,绿球3个.现从盒子中随机取出两个球,记事件为“取出的两个球颜色不同”,事件为“取出一个黄球,一个绿球”,则A. B.C. D.5.空间中不共面的4点A,B,C,D,若其中3点到平面的距离相等且为第四个点到平面的倍,这样的平面的个数为()A.8 B.16 C.32 D.486.已知集合,则()A. B. C. D.7.4名学生报名参加语、数、英兴趣小组,每人选报1种,则不同方法有()A.种 B.种 C.种 D.种8.组合数恒等于()A. B. C. D.9.已知椭圆的右焦点为.短轴的一个端点为,直线交椭圆于两点.若,点到直线的距离不小于,则椭圆的离心率的取值范围是()A. B. C. D.10.某市一次高二年级数学统测,经抽样分析,成绩近似服从正态分布,且,则()A.0.2 B.0.3 C.0.4 D.0.511.已知,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.已知矩形ABCD中,AB=2,BC=1,F为线段CD上一动点(不含端点),现将△ADF沿直线AF进行翻折,在翻折过程中不可能成立的是()A.存在某个位置,使直线AF与BD垂直 B.存在某个位置,使直线AD与BF垂直C.存在某个位置,使直线CF与DA垂直 D.存在某个位置,使直线AB与DF垂直二、填空题:本题共4小题,每小题5分,共20分。13.已知甲箱子里装有3个白球、2个黑球,乙箱子里装有2个白球、2个黑球,从这两个箱子里分别随机摸出1个球,则恰有一个白球的概率为__________.14.抛物线上的点到的距离与到其准线距离之和的最小值是_____.15.若实数x,y满足,则的最大值为__________;16.双曲线的渐近线方程为三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知为虚数单位,复数满足,(1)求.(2)在复平面内,为坐标原点,向量,对应的复数分别是,,若是直角,求实数的值.18.(12分)已知曲线的参数方程为,以原点为极点,以轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为.(1)写出曲线的极坐标方程和直线的直角坐标方程;(2)若射线与曲线交于两点,与直线交于点,射线与曲线交于两点,求的面积.19.(12分)如图,在矩形中,为CD的中点,将沿AE折起到的位置,使得平面平面.(1)证明:平面平面;(2)求平面与平面所成二面角的正弦值.20.(12分)设函数f(x)=|x+a|+|x-a|.(1)当a=1时,解不等式f(x)≥4;(2)若f(x)≥6在x∈R上恒成立,求a的取值范围.21.(12分)已知函数在与时都取得极值.(1)求的值与函数的单调区间;(2)若对,不等式恒成立,求的取值范围.22.(10分)如图,在三棱锥中,两两垂直,,且为线段的中点.(1)证明:平面;(2)若,求平面与平面所成角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

根据判断出为等边三角形的中心,由此求得正三棱锥的底面积和高,进而求得正三棱锥的体积.【详解】由于三棱锥是正三棱锥,顶点在底面的射影是底面中心.由可知,为等边三角形的中心,由于正三棱锥的外接球的半径为,故由正弦定理得,且正三棱锥的高为球的半径,故正三棱锥的体积为.所以本小题选A.【点睛】本小题主要考查正三棱锥的几何性质,考查向量加法运算,考查几何体外接球有关问题的求解,属于中档题.2、D【解析】

令y=,从而求导y′=以确定函数的单调性及取值范围,再令=t,从而化为t2+(a﹣1)t+1﹣a=0有两个不同的根,从而可得a<﹣3或a>1,讨论求解即可.【详解】令y=,则y′=,故当x∈(0,e)时,y′>0,y=是增函数,当x∈(e,+∞)时,y′>0,y=是减函数;且=﹣∞,=,=0;令=t,则可化为t2+(a﹣1)t+1﹣a=0,故结合题意可知,t2+(a﹣1)t+1﹣a=0有两个不同的根,故△=(a﹣1)2﹣4(1﹣a)>0,故a<﹣3或a>1,不妨设方程的两个根分别为t1,t2,①若a<﹣3,t1+t2=1﹣a>4,与t1≤且t2≤相矛盾,故不成立;②若a>1,则方程的两个根t1,t2一正一负;不妨设t1<0<t2,结合y=的性质可得,=t1,=t2,=t2,故(1﹣)2(1﹣)(1﹣)=(1﹣t1)2(1﹣t2)(1﹣t2)=(1﹣(t1+t2)+t1t2)2又∵t1t2=1﹣a,t1+t2=1﹣a,∴(1﹣)2(1﹣)(1﹣)=1;故选:D.【点睛】本题考查了导数的综合应用及转化思想的应用,考查了函数的零点个数问题,考查了分类讨论思想的应用.3、C【解析】

当丙在第一或第五位置时,有种排法;当丙在第二或第四位置时,有种排法;当丙在第三或位置时,有种排法;则不同的排法种数为36种.4、D【解析】分析:先求取出的两个球颜色不同得概率,再求取出一个黄球,一个绿球得概率可,最后根据条件概率公式求结果.详解:因为所以,选D.点睛:本题考查条件概率计算公式,考查基本求解能力.5、C【解析】

由题意分类讨论各种情况,然后利用加法原理确定满足题意的平面的个数即可.【详解】第一种情况,A,B,C,D点在平面的同侧.当平面∥平面BCD时,A与平面的距离是与平面BCD的距离的2倍.这种情况下有4个平面.第二种情况,A,B,C,D中有3个点在平面的一侧,第4个点在平面的另一侧,这时又有两种情形:一种情形是平面与平面BCD平行,且A与平面的距离是平面与平面BCD距离的2倍.这时有4个平面.另一种情形如图a所示,图中E,F分别是AB,AC的中点,K是AD的三等分点中靠近A的分点,A,B,C到平面EFK(即平面)的距离是D到平面EFK距离的一半.∵EF可以是AB,AC的中点的连线,又可以是AB,BC的中点的连线,或AC,BC的中点的连线,∴这种情形下的平面有3×4=12(个).第三种情况,如图b所示,在A,B,C,D四点中,平面两侧各种有两点.容易看出:点A到平面EFMN(平面)的距离是B,C,D到该平面距离的2倍.就A,C与B,D分别位于平面两侧的情形来看,就有A离平面远,B离平面远,C离平面远,D离平面远这四种情况.又“AC,BD异面,则这样的异面直线共有3对,∴平面有4×3=12(个).综上分析,平面有4+4+12+12=32(个).故选C.【点睛】本题主要考查分类讨论的数学思想,计数原理的应用,空间几何体的结构特征等知识,意在考查学生的转化能力和计算求解能力.6、A【解析】

先求得集合的元素,由此求得两个集合的交集.【详解】依题意,故,故选A.【点睛】本小题主要考查两个集合的交集的求法,考查对数运算,属于基础题.7、B【解析】

直接根据乘法原理计算得到答案.【详解】每个学生有3种选择,根据乘法原理共有种不同方法.故选:.【点睛】本题考查了乘法原理,属于简单题.8、D【解析】

根据组合数的公式得到和,再比较选项得到答案.【详解】.,可知故选:D.【点睛】本题考查组合数的计算公式,意在考查基本公式,属于基础题型.9、A【解析】试题分析:设是椭圆的左焦点,由于直线过原点,因此两点关于原点对称,从而是平行四边形,所以,即,,设,则,所以,,即,又,所以,.故选A.考点:椭圆的几何性质.【名师点睛】本题考查椭圆的离心率的范围,因此要求得关系或范围,解题的关键是利用对称性得出就是,从而得,于是只有由点到直线的距离得出的范围,就得出的取值范围,从而得出结论.在涉及到椭圆上的点到焦点的距离时,需要联想到椭圆的定义.10、A【解析】

根据正态分布的对称性求出P(X≥90),即可得到答案.【详解】∵X近似服从正态分布N(84,σ2),.∴,故选:A.【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,抓住正态分布曲线的对称性即可解题,属于基础题.11、B【解析】

根据充分性和必要性的判断方法来判断即可.【详解】当时,若,不能推出,不满足充分性;当,则,有,满足必要性;所以“”是“”的必要不充分条件.故选:B.【点睛】本题考查充分性和必要性的判断,是基础题.12、C【解析】

连结BD,在中,可以作于O,并延长交CD于F,得到成立,得到A正确;由翻折中,保持不变,可得到B正确;根据翻折过程中,,可得到C错误;根据翻折过程中,保持不变,假设成立,得到平面ABD,结合题中条件,进而可得出结果.【详解】对于A,连结BD,在中,可以作于O,并延长交CD于F,则成立,翻折过程中,这个垂直关系保持不变,故A正确;对于B,在翻折过程中,保持不变,当时,有平面,从而,此时,AD=1,AB=2,BD=,故B正确;对于C,在翻折过程中,保持不变,若成立,则平面CDF,从而,AD=1,AC=,得CD=2,在翻折过程中,,即CD<2,所以,CD=2不成立,C不正确;对于D,在翻折过程中,保持不变,若成立,则平面ABD,从而,设此时,则BF=,BD=,只要,BD就存在,所以D正确选C.【点睛】本题主要考查空间中直线与直线的位置关系,熟记线面垂直的判定定理与性质定理即可,属于常考题型.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

通过分析恰有一个白球分为两类:“甲中一白球乙中一黑球”,“甲中一黑球乙中一白球”,于是分别计算概率相加即得答案.【详解】恰有一个白球分为两类:甲中一白球乙中一黑球,甲中一黑球乙中一白球.甲中一白球乙中一黑球概率为:,甲中一黑球乙中一白球概率为:,故所求概率为.【点睛】本题主要考查乘法原理和加法原理的相关计算,难度不大,意在考查学生的分析能力,计算能力.14、【解析】

先求出抛物线的焦点坐标,根据定义把p到准线的距离转化为p到焦点的距离,再由抛物线的定义可得d=|PF|+|PA|≥|AF|,再求出|AF|的值.【详解】解:∵抛物线y2=4x,∴F(1,0),如图:设p在准线上的射影A″,依抛物线的定义知P到该抛物线准线的距离为|PA″|=|PF|,则点P到点A(0,2)的距离与P到该抛物线准线的距离之和d=|PF|+|PA|≥|AF|=.故答案为:.【点睛】本题考查抛物线定义的转化,考查数学转化的思想和数形结合的思想,属于基础题.15、3【解析】

作出可行域,作出目标函数对应的直线,平移此直线可得最优解。【详解】作出可行域,如图内部(含边界),作直线,向上平移直线,增大,当直线过点时,取得最大值3。故答案为:3。【点睛】本题考查简单的线性规划,解题方法是作出可行域,作出目标函数对应的直线,平移此直线可得最优解。16、【解析】试题分析:由双曲线方程可知渐近线方程为考点:双曲线方程及性质三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)z=3+4i;(2)c=8【解析】

(1)设,由,进行计算化简,得到关于的方程组,解得答案;(2)代入(1)中求出的,然后由∠AOB是直角,得到,得到关于的方程,求出的值.【详解】(1)设,由,得,∴,解得.∴;(2)由题意,的坐标分别为∴,,∵是直角,∴,即.【点睛】本题考查复数的运算,复数模长的表示,向量垂直的坐标表示,属于简单题.18、(1);(2)【解析】

(1)首先根据曲线的参数方程先化为直角坐标方程,再把直接直角坐标方程化为极坐标方程.根据即可把直线化为直角坐标方程.(2)把射线带入曲线和直线的极坐标方程得出点的坐标,把射线带入曲线的极坐标得出点的坐标.根据即可求出面积.【详解】(1)因为曲线的参数方程为所以所以曲线的极坐标方程为:又直线的极坐标方程为所以直线的直角坐标系方程为综上所述:(2)由(1)知曲线的极坐标方程为所以联立射线与曲线及直线的极坐标方程可得所以联立射线与曲线的极坐标方程可得所以所以【点睛】本题主要考查了参数方程、直角坐标方程、极坐标方程直接的互化,主要掌握.属于基础题.19、(1)证明见解析;(2).【解析】

(1)由题可得,即,由平面平面,根据面面垂直的性质可得平面,从而证明平面平面;(2)结合(1),如图建立空间直角坐标系,分别求出平面与平面的法向量,由二面角的余弦公式求出余弦值,从而可得到平面与平面所成二面角的正弦值.【详解】(1)证明:设,在矩形中,由为的中点,易求得:,所以.所以.又因为平面平面,平面平面,所以平面.又平面,所以平面平面.(2)设,取中点,连接﹐由,得,所以.又平面平面,平面平面,故平面.如图,以为坐标原点,分别以,的方向为轴,轴正方向建立空间直角坐标系,依题意得:.,由(1)知平面,故可取平面的法向量为,设平面的法向量为,则,即不妨取,得,设平面与平面所成二面角为θ,,则,所以平面与平面所成二面角的正弦值为.【点睛】本题考查立体几何中面面垂直的证明以及二面角的正弦值的求法,考查利用空间向量解决问题的能力,属于中档题.20、(1)x∈[2,+∞)∪(-∞,-2](2)a∈[3,+∞)∪(-∞,-3]【解析】分析:(1)将a=1代入,分段求解即可;(2)利用fx=|x+a|+|x-a|≥|x+a-详解:(1)当a=1时,不等式fx当x>1时,fx=2x≥4,解得当-1≤x≤1时,fx=2≥4当x<-1时,fx=-2x≥4,解得综上所述,不等式的解集为[2,+∞)∪(-∞,-2].(2)f∴|2a|≥6,解得a≥3或a≤-3,即a的取值范围是[3,+∞)∪(-∞,-3].点睛:含绝对值不等式的常用解法(1)基本性质法:对a∈R+,|x|<a⇔-a<x<a,|x|>a⇔x<-a或x>a.(2)平方法:两边平方去掉绝对值符号.(3)零点分区间法:含有两个或两个以上绝对值符号的不等式,可用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解.(4)几何法:利用绝对值的几何意义,画出数轴,将绝对值转化为数轴上两点的距离求解.(5)数形结合法:在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解.21、解:(1),递增区间是(﹣∞,)和(1,+∞),递减区间是(,1).(1)【解析】

(1)求出f(x),由题意得f()=0且f(1)=0联立解得与b的值,然后把、b的值代入求得f(x)及f

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论