版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省丽水市黄田中学高一数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数上的零点个数为
A.1个
B.2个
C.3个
D.4个参考答案:B2.在△ABC中,,则A等于
A.60°B.45°C.120°
D.30°参考答案:C3.有下列函数:①y=x2﹣3|x|+2;②y=x2,x∈(﹣2,2];③y=x3;④y=x﹣1,其中是偶函数的有----------------()A、①
B、①③
C、①②
D、②④参考答案:A略4.函数f(x)=()x+﹣3的零点所在区间是()A.(1,2) B.(0,1) C.(﹣1,0) D.(﹣2,﹣1)参考答案:C【考点】二分法的定义.【分析】由函数的解析式求得f(0)f(﹣1)<0,再根据根据函数零点的判定定理可得函数f(x)的零点所在的区间.【解答】解:∵f(x)=()x+﹣3,∴f(0)=1+﹣3<0,f(﹣1)=3+﹣3>0,∴f(0)f(﹣1)<0.根据函数零点的判定定理可得函数f(x)的零点所在的区间是(﹣1,0),故选:C.5.在等比数列{an}中,=1,=3,则的值是(
)A、14
B、16
C、18
D、20参考答案:B6.在△ABC中,若b=asinC,c=acosB,则△ABC的形状为()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰或直角三角形参考答案:C【考点】GZ:三角形的形状判断.【分析】由条件利用正弦定理可得sinA=1,可得A=.再由sinC=sinB,利用正弦定理可得c=b,可得△ABC的形状为等腰直角三角形.【解答】解:在△ABC中,∵b=asinC,c=acosB,故由正弦定理可得sinB=sinAsinC,sinC=sinAsinB,∴sinB=sinAsinAsinB,∴sinA=1,∴A=.∴sinC=sinAsinB即sinC=sinB,∴由正弦定理可得c=b,故△ABC的形状为等腰直角三角形,故选:C.【点评】本题主要考查正弦定理的应用,判断三角型的形状,属于基础题.7.已知函数有且仅有一个正实数的零点,则实数的取值范围是A.
B.
C.
D.
参考答案:D略8.2.从中随机取出三个不同的数,则其和为奇数的概率为
(
)A.
B.
C.
D.参考答案:C9.设为实数,。记集合若,分别为集合的元素个数,则下列结论不可能的是(
)A.
且
B.
且
C.
且
D.
且参考答案:D10.若函数的减区间是,则实数值是(
)
A.
B.
C.
D.参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.已知角α的终边位于函数y=﹣3x的图象上,则cos2α的值为
.参考答案:﹣【考点】二倍角的余弦;任意角的三角函数的定义.【分析】设点的坐标为(a,﹣3a),则r=|a|,分类讨论,即可求sinα,cosα的值,利用倍角公式即可得解.【解答】解:设点的坐标为(a,﹣3a),则r=|a|,a>0,sinα=﹣,cosα=,cos2α=cos2α﹣sin2α=﹣;a<0,sinα=,cosα=﹣,cos2α=cos2α﹣sin2α=﹣.综上,cos2α的值为﹣.故答案为:﹣.12..已知函数是定义在区间[-3,3]上的偶函数,它在区间[0,3]上的图像是如图所示的一条线段,则不等式的解集为__________.
参考答案:由题意,函数f(x)过点(0,2),(3,0),∴,又因为f(x)是偶函数,关于y轴对称,所以,即,又作出函数在[-3,3]上的图像,当的时候,的图像恒在的上方,当的时候,令,,即当的时候,满足,即13.直线的倾斜角是
.参考答案:略14.已知函数在(1,3)上单调递减,则a的取值范围是__________.参考答案:【分析】令,则,根据复合函数的单调性可知为减函数,同时注意真数,即可求出的取值范围.【详解】令,则,因为为增函数,所以为减函数,且当时,故解得,故答案为【点睛】本题主要考查了复合函数的单调性,对数的性质,属于中档题.15.定义两种运算:,,则函数的奇偶性为
。参考答案:16.若方程有两个解,则a的取值范围
参考答案:略17.已知a,b为直线,为平面,下列四个命题:①若,则;②若,则;③若,则;④若,则.其中正确命题的序号是______.参考答案:③④【分析】①和②均可以找到不符合题意的位置关系,则①和②错误;根据线面垂直性质定理和空间中的平行垂直关系可知③和④正确.【详解】若,此时或,①错误;若,此时或异面,②错误;由线面垂直的性质定理可知,若,则,③正确;两条平行线中的一条垂直于一个平面,则另一条直线必垂直于该平面,可知④正确本题正确结果:③④【点睛】本题考查空间中的平行与垂直关系相关命题的判断,考查学生对于平行与垂直的判定和性质的掌握情况.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=2,E是PC的中点,作EF⊥PB交PB于点F.(1)证明PA∥平面EDB;(2)证明PB⊥平面EFD;(3)求VB﹣EFD.参考答案:考点: 直线与平面垂直的判定;直线与平面平行的判定.专题: 空间位置关系与距离.分析: (1)利用线面平行的判定定理证明线面平行.(2)利用线面垂直的判定定理证明.(3)利用锥体的体积公式求体积.解答: (1)连结AC,交BD于O,连结EO,因为ABCD是正方形,点O是AC的中点,在三角形PAF中,EO是中位线,所以PA∥EO,而EO?面EDB,且PA?面EDB,所以PA∥平面EDB;(2)因为PD⊥底面ABCD,所以PD⊥DC在底面正方形中,DC⊥BC,所以BC⊥面PDC,而DE?面PDC,所以BC⊥DE,又PD=DC,E是PC的中点,所以DE⊥PC,所以DE⊥面PBC,而PB?面PBC,所以DE⊥PB,又EF⊥PB,且DE∩EF=E,所以PB⊥平面EFD.(3)因为PD=DC=2,所以,,因为,所以,即,,,DE=,BF===,所以VB﹣EFD=×DE×EF×BF=××=.点评: 本题主要考查线面平行和线面垂直的判定,要求熟练掌握相应的判定定理.19.(本题满分10分)已知函数,且(I)求的最小正值及此时函数的表达式;(II)将(I)中所得函数的图象经过怎样的变换可得的图象;(III)在(I)的前提下,.设.
求的值.参考答案:20.(12分)如图,设有三个乡镇,分别位于一个矩形的两个顶点及的中点处,,,现要在该矩形的区域内(含边界),且与等距离的一点处建造一个医疗站,记点到三个乡镇的距离之和为.(1)设,将表示为的函数;(2)试利用(1)的函数关系式确定医疗站的位置,使三个乡镇到医疗站的距离之和最短.参考答案:(1)如图,延长交于点,由题设可知,,,在中,,,又,;…………6分(2),令,则,
或(舍),当时,,所以最小,即医疗站的位置满足,可使得三个乡镇到医疗站的距离之和最短.…ks5u…12分略21.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点,求证:(1)直线EF∥平面PCD;
(2)平面BEF⊥平面PAD.参考答案:
证明:(1)因为E、F分别是AP、AD的中点,∴EF∥PD,又∵P,D∈面PCD,E,F?面PCD,∴直线EF∥平面PCD.(2)∵AB=AD,∠BAD=60°,F是AD的中点,∴BF⊥AD,又平面PAD⊥平面ABCD,面PAD∩面ABCD=AD,∴BF⊥面PAD,∴平面BEF⊥平面PAD.略22.已知,且向量与不共线.(1)若与的夹角为,求;(2)若向量与的夹角的钝角,求实数k的取值范围.参
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Module2MemyfamilyandfriendsUnit2FriemdsPeriod2(课件)牛津上海版(试用本)英语五年级上册
- 2024年度智能城市基础设施建设合同3篇
- 建筑劳务承包合同范本
- 2024年二手房交易双方权益保障协议2篇
- 2024年度软件许可合同的许可权限3篇
- 生产车间新员工入职培训
- 全体员工培训计划方案
- 2024年度环保项目投资与融资法律尽职调查合同3篇
- 《智慧商场方案》课件
- 《成分输血进展》课件
- 污水处理厂土建工程的主要施工方案
- 集体生活成就我 课件-统编版道德与法治七年级上册
- 2024年公司股权转让中介的协议范本
- 2024秋期国家开放大学《建筑工程项目管理》一平台在线形考(作业1至4)试题及答案
- 护理质控组长岗位竞聘
- 苏教版六年级上册数学期中考试试题带答案
- 北京市海淀区九年级(上)期中数学试卷-
- 吉祥物的设计 课件 2024-2025学年人教版(2024)初中美术七年级上册
- 2024年中国电动卷帘电机市场调查研究报告
- “四史”(改革开放史)学习通超星期末考试答案章节答案2024年
- 东莞市房屋建筑和市政基础设施工程施工招标文件
评论
0/150
提交评论