版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年广西壮族自治区南宁市百合中学高二数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.直线ρcosθ=2关于直线θ=对称的直线方程为()A.ρcosθ=-2B.ρsinθ=2
C.ρsinθ=-2
D.ρ=2sinθ参考答案:B略2.高二某班共有学生56人,座号分别为1,2,3,…,56现根据座号,用系统抽样的方法,抽取一个容量为4的样本.已知4号、18号、46号同学在样本中,那么样本中还有一个同学的座号是()A.30 B.31 C.32 D.33参考答案:C【考点】系统抽样方法.【分析】根据系统抽样原理求出抽样间隔,由第一组抽出的学号得出每组抽出的学号是什么.【解答】解:根据系统抽样原理得,抽样间隔是=14,且第一组抽出的学号为4,那么每组抽出的学号为4+14(n﹣1),其中n=1、2、3、4;所以第二组抽取的学号为4+14×2=32.故选C.3.书架上有不同的语文书10本,不同的英语书7本,不同的数学书5本,现从中任选一本阅读,不同的选法有()A.22种 B.350种 C.32种 D.20种参考答案:A【分析】从中任选一本阅读,选择的方法有三类,故选择1本书的方法需要分三种情况讨论,再利用加法原理解决问题.【详解】解:由题意知本题是一个分类计数问题,解决问题分成三个种类,一是选择语文书,有10种不同的选法;二是选择英语书,有7种不同的选法,三是选择数学书,有5种不同的选法,根据分类计数原理知,共有10+7+5=22种不同的选法.【点睛】本题考查分类计数原理,本题解题的关键是看清楚完成一件事包含有几类情况,计算出每一类所包含的基本事件数,进而相加得到结果.4.一个水平放置的平面图形的斜二测直观图是一个底角为45°,腰和上底长均为1的等腰梯形,则这个平面图形的面积是
(
)A. B.
C.
D.参考答案:D略5.如图是函数的导函数的图象,则下面说法正确的是()(A)在(-2,1)上f(x)是增函数(B)在(1,3)上f(x)是减函数(C)当时,f(x)取极大值(D)当时,f(x)取极大值参考答案:D由图象可知上恒有,在上恒有,在上单调递增,在上单调递减则当时,取极大值故选:D.
6.下图中三个直角三角形是一个体积为20的几何体的三视图,则(
)A.6
B.8
C.4
D.12参考答案:C7.计算的结果是A B. C. D.参考答案:C略8.若等差数列{an}的公差为d,前n项和为Sn,则数列为等差数列,公差为,类似地,若各项均为正数的等比数列{bn}的公比为q,前n项积为Tn,则等比数列的公比为(
)A. B. C. D.参考答案:C∵在等差数列中前n项的和为的通项,且写成了
=a1+(n?1)×.所以在等比数列{}中应研究前n项的积为的开n方的形式。类比可得=b1()n?1.其公比为.故选:C.9.设F1,F2分别是椭圆+=1(a>b>0)的左、右焦点,过F2的直线交椭圆于P,Q两点,若∠F1PQ=60°,|PF1|=|PQ|,则椭圆的离心率为() A. B. C. D.参考答案:D【考点】椭圆的简单性质. 【专题】计算题;圆锥曲线的定义、性质与方程. 【分析】设|PF1|=t,则由∠F1PQ=60°,|PF1|=|PQ|,推出PQ|=t,|F1Q|=t,且F2为PQ的中点,根据椭圆定义可知|PF1|+|PF2|=2a用t表示,根据等边三角形的高,求出2c用t表示,再由椭圆的离心率公式e=,即可得到答案. 【解答】解:设|PF1|=t, ∵|PF1|=|PQ|,∠F1PQ=60°, ∴|PQ|=t,|F1Q|=t, 由△F1PQ为等边三角形,得|F1P|=|F1Q|, 由对称性可知,PQ垂直于x轴, F2为PQ的中点,|PF2|=, ∴|F1F2|=,即2c=, 由椭圆定义:|PF1|+|PF2|=2a,即2a=t=t, ∴椭圆的离心率为:e===. 故选D. 【点评】本题主要考查了椭圆的简单性质,离心率的求法,考查了学生对椭圆定义的理解和运用. 10.定义在上的函数,如果对于任意给定的等比数列,仍是等比数列,则称为“保等比数列函数”.现有定义在上的如下函数:①;
②;
③;
④.则其中是“保等比数列函数”的的序号为 ()A.①② B.③④ C.②④ D.①③
参考答案:D等比数列性质,,①;②;③;④.选D二、填空题:本大题共7小题,每小题4分,共28分11.设{an}是等比数列,且,,则{an}的通项公式为_______.参考答案:,【分析】先设的公比为,根据题中条件求出公比,进而可得出结果.【详解】设等比数列的公比为,因为,,所以,解得,所以,因此,,.故答案为,12.已知点F1、F2分别是椭圆的左、右焦点,过F1且垂直于x轴的直线与椭圆交于A、B两点,若△ABF2为正三角形,则椭圆的离心率是_________.
参考答案:13.以点C(-1,2)为圆心且与x轴相切的圆的方程为
;
参考答案:(x+1)2+(y-2)2=4略14.在底面是正方形的长方体中,,则异面直线与所成角的余弦值为 .参考答案:
15.复数(2+i)·i的模为___________.参考答案:.16.等差数列,的前项和分别为,,若,则=
___
参考答案:17.定义在R上的奇函数f(x),对于?x∈R,都有,且满足f(4)>﹣2,,则实数m的取值范围是.参考答案:{m|m<﹣1或0<m<3}【考点】函数奇偶性的性质.【分析】根据,然后用代换x便可得到,再用代换x便可得出f(x+3)=f(x),从而便得到f(x)是以3为周期的周期函数,这样即可得到f(1)>﹣2,,从而解不等式便可得出实数m的取值范围.【解答】解:∵;用代换x得:;用代换x得:;即f(x)=f(x+3);∴函数f(x)是以3为周期的周期函数;∴f(4)=f(1)>﹣2,f(2)=﹣f(﹣2)=﹣f(﹣2+3)=﹣f(1)<2;∴;解得m<﹣1,或0<m<3;∴实数m的取值范围为{m|m<﹣1,或0<m<3}.故答案为:{m|m<﹣1,或0<m<3}.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分14分)已知椭圆的左、右焦点分别是,离心率为,过且垂直于轴的直线被椭圆截得的线段长为1;(I)求椭圆的方程.(Ⅱ)若是椭圆上的三个点,是坐标原点,当点B是椭圆的右顶点,且四边形OABC为菱形时,求此菱形的面积.(III)设点是椭圆上除长轴端点外的任一点,连接、,设的角平分线交椭圆的长轴于点,求的取值范围.参考答案:(1)由已知得,,,解得所以椭圆方程为:…………4分(2)四边形OABC为菱形,可得线段OB的垂直平分线为x=1,∴,……6分从而菱形OABC的面积为…………8分(3)由题意可知:=,=,…………10分设其中,将向量坐标代入并化简得:m(,……12分因为,所以,………………13分而,所以………………14分19.为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值为10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡.请对袋中的4个球的面值给出一个合适的设计,并说明理由.参考答案:(1)(ⅰ);(ⅱ)40;(2)选择方案(20,20,40,40).试题分析:(1)(ⅰ)摸出2个球共有种方法,由题意得摸出2个球中一个为面值为50元,另一个为10元的,所以有种方法,所求概率为;(ⅱ)先确定随机变量取法:20,60.再分别求对应概率,列表得分布列,最后根据公式求数学期望(2)根据商场的预算,每个顾客的平均奖励额为60元,所以数学期望为60元.因此只能有两个方案:(10,10,50,50),(20,20,40,40),这两个方案的数学期望皆为60,为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,即方差要尽可能小,计算两者方差得选择方案(20,20,40,40).试题解析:(1)设顾客所获的奖励额为X,(ⅰ)依题意,得P(X=60)==,即顾客所获的奖励额为60元的概率为.(ⅱ)依题意,得X的所有可能取值为20,60.P(X=60)=,P(X=20)==,即X的分布列为X
20
60
P
所以顾客所获的奖励额的期望为E(X)=20×+60×=40(元).(2)根据商场的预算,每个顾客的平均奖励额为60元.所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X1,则X1的分布列为X1
20
60
100
P
X1的期望为E(X1)=20×+60×+100×=60,X1的方差为D(X1)=(20-60)2×+(60-60)2×+(100-60)2×=.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X2,则X2的分布列为X2
40
60
80
P
X2的期望为E(X2)=40×+60×+80×=60,X2的方差为D(X2)=(40-60)2×+(60-60)2×+(80-60)2×=.由于两种方案的奖励额的期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.考点:古典概型概率,数学期望及方差【方法点睛】古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.20.因改卷系统故障,不能进行数据分析,年级为了解某次高二年级月考数学测试成绩分布情况,从改卷系统中抽取了部分学生的数学成绩,将所得数据整理后,画出频率分布直方图(图19),又已知图中从左到右各小长方形的面积之比为,且50-70分的频数为8.(1)50-70分对应的频率是多少?本次抽取的样本容量是多少?(2)测试成绩达90分以上的为及格,试估计本次考试年级的及格率.(3)本次数学测试成绩的中位数落在哪一个分数段内?请说明理由.图19参考答案:答案(1)0.08;100;(4分)(2)0.52;(8分)(3)由题可知,落在各分数段的频数分别为:4,8,36,28,18,6,故落在90-110这个分数段.(12分)21.已知函数(1)求函数f(x)的最小正周期T;(2)求f(x)的最大值,并指出取得最大值时x取值集合;(3)当时,求函数f(x)的值域.参考答案:(1)利用二倍角和辅助角公式化简为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期;(2)根据三角函数的性质即可得f(x)的最大值,以及取得最大值时x取值集合;(3)当x∈[,]时,求出内层函数的取值范围,结合三角函数的图象和性质,求出f(x)的最大值和最小值,即得到f(x)的值域.解:函数f(x)=(sinx+cosx)2+2cos2x﹣2化简可得:f(x)=1+2sinxcosx+1+cos2x﹣2=sin2x+cos2x=sin(2x+)(1)函数f(x)的最小正周期T=.(2)令2x+=,k∈Z,得:x=.∴当x=时,f(x)取得最大值为.∴取得最大值时x取值集合为{x|x=,k∈Z}.(3)当x∈[,]时,可得:2x+∈[,],∴﹣1≤sin(2x+)≤∴≤sin(2x+)≤1.故得当x∈[,]时,函数f(x)的值域为[,1].22.(本小题满分12分)N
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国学校家具行业发展现状及前景规划研究报告
- 2024-2030年中国婴儿洗护用品市场运行动态及前景趋势预测报告
- 2024-2030年中国女性洗液行业市场营销模式及发展前景预测报告
- 2024-2030年中国多型腔热流道管坯模具境外融资报告
- 2024年标准简易个人鱼塘承包合同模板版B版
- 梅河口康美职业技术学院《高级语言程序实践》2023-2024学年第一学期期末试卷
- 茂名职业技术学院《语文教学设计与实施》2023-2024学年第一学期期末试卷
- 微专题定量测定型实验突破策略-2024高考化学一轮考点击破
- 吕梁职业技术学院《生物学科专业导论》2023-2024学年第一学期期末试卷
- 2024年某科技公司与某航空公司关于机载娱乐系统的合同
- 2024年华润电力投资有限公司招聘笔试参考题库含答案解析
- 垄断行为的定义与判断准则
- 模具开发FMEA失效模式分析
- 聂荣臻将军:中国人民解放军的奠基人之一
- 材料化学专业大学生职业生涯规划书
- 乳品加工工(中级)理论考试复习题库(含答案)
- 《教材循环利用》课件
- 学生思想政治工作工作证明材料
- 2023水性环氧树脂涂层钢筋
- 国开《Windows网络操作系统管理》形考任务2-配置本地帐户与活动目录域服务实训
- 环保设施安全风险评估报告
评论
0/150
提交评论