




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某中学高二年级的一个研究性学习小组拟完成下列两项调查:①从某社区430户高收入家庭,980户中等收入家庭,290户低收入家庭中任意选出170户调查社会购买力的某项指标;②从本年级12名体育特长生中随机选出5人调查其学习负担情况;则该研究性学习小组宜采用的抽样方法分别是()A.①用系统抽样,②用简单随机抽样 B.①用系统抽样,②用分层抽样C.①用分层抽样,②用系统抽样 D.①用分层抽样,②用简单随机抽样2.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5袋奶粉的编号可能是()A.5,10,15,20,25B.2,4,8,16,32C.1,2,3,4,5D.7,17,27,37,473.设实数,满足约束条件,则的取值范围是()A. B. C. D.4.已知函数的导函数为,若,则函数的图像可能是()A. B. C. D.5.下列几种推理中是演绎推理的序号为()A.由,,,…猜想B.半径为的圆的面积,单位圆的面积C.猜想数列,,,…的通项为D.由平面直角坐标系中,圆的方程为推测空间直角坐标系中球的方程为6.有件产品,其中件是次品,从中任取件,若表示取得次品的件数,则()A. B. C. D.7.已知,则的展开式中,项的系数等于()A.180 B.-180 C.-90 D.158.已知,则()A. B.3 C. D.9.已知是两条不同的直线,是两个不同的平面,则下列命题正确的是A.,则B.,则C.,则D.,则10.将函数的图像向右平移个单位长度,再把图象上所有点的横坐标伸长到原来的倍(纵坐标不变)得到函数的图象,则下列说法正确的是()A.函数的最大值为 B.函数的最小正周期为C.函数的图象关于直线对称 D.函数在区间上单调递增11.设函数,其中,,存在使得成立,则实数的值为()A.B.C.D.12.设函数的极小值为,则下列判断正确的是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.为了了解家庭月收入(单位:千元)与月储蓄(单位:千元)的关系,从某居民区随机抽取10个家庭,根据测量数据的散点图可以看出与之间具有线性相关关系,其回归直线方程为,若该居民区某家庭月收入为7千元,据此估计该家庭的月储蓄为__________千元.14.已知点在抛物线上,那么点到点的距离与点到抛物线焦点距离之和取得最小值时,点的坐标为______15.已知数列是等差数列,是等比数列,数列的前项和为.若,则数列的通项公式为_________.16.椭圆的焦点为、,为椭圆上的一点,,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在平面直角坐标系xOy中,椭圆C:的焦点为F1(–1、0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1=.(1)求椭圆C的标准方程;(2)求点E的坐标.18.(12分)已知函数.(1)求函数的单调区间;(2)当时,求函数的最大值.19.(12分)已知过点的椭圆的左右焦点分别为、,为椭圆上的任意一点,且,,成等差数列.(Ⅰ)求椭圆的标准方程;(Ⅱ)直线交椭圆于,两点,若点始终在以为直径的圆外,求实数的取值范围.20.(12分)已知件产品中有件是次品.(1)任意取出件产品作检验,求其中至少有件是次品的概率;(2)为了保证使件次品全部检验出的概率超过,最少应抽取几件产品作检验?21.(12分)已知直线l的参数方程为(为参数).以为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出直线l经过的定点的直角坐标,并求曲线的普通方程;(2)若,求直线的极坐标方程,以及直线l与曲线的交点的极坐标.22.(10分)已知函数.(1)当时,求函数在点处的切线方程;(2)若函数有两个不同极值点,求实数的取值范围;(3)当时,求证:对任意,恒成立.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
①总体由差异明显的几部分构成时,应选用分层抽样;②总体个体数有限、逐个抽取、不放回、每个个体被抽到的可能性均等,应选用简单随机抽样;∴选D2、D【解析】此题考查系统抽样系统抽样的间隔为:k=50答案D点评:掌握系统抽样的过程3、A【解析】分析:作出题中不等式组表示的平面区域,得到如图的△ABC及其内部,再将目标函数z=|x|﹣y对应的直线进行平移,观察直线在y轴上的截距变化,即可得出z的取值范围.详解:作出实数x,y满足约束条件表示的平面区域,得到如图的△ABC及其内部,其中A(﹣1,﹣2),B(0,),O(0,0).设z=F(x,y)=|x|﹣y,将直线l:z=|x|﹣y进行平移,观察直线在y轴上的截距变化,当x≥0时,直线为图形中的红色线,可得当l经过B与O点时,取得最值z∈[0,],当x<0时,直线是图形中的蓝色直线,经过A或B时取得最值,z∈[﹣,3]综上所述,z∈[﹣,3].故答案为:A.点睛:(1)本题主要考查线性规划,意在考查学生对该知识的掌握水平和数形结合的思想方法,考查学生分类讨论思想方法.(2)解答本题的关键是对x分x≥0和x<0讨论,通过分类转化成常见的线性规划问题.4、D【解析】
根据导数的几何意义和,确定函数在上单调递减,在上单调递增,在上单调递减,即可得出结论.【详解】函数的导函数为,,∴函数在上单调递减,在上单调递增,在上单调递减,故选:D.【点睛】本题考查函数的图象与其导函数的关系,考查学生分析解决问题的能力,属于基础题.5、B【解析】
根据演绎推理、归纳推理和类比推理的概念可得答案.【详解】A.是由特殊到一般,是归纳推理.B.是由一般到特殊,是演绎推理.C.是由特殊到一般,是归纳推理.D.是由一类事物的特征,得到另一类事物的特征,是类比推理.故选:B【点睛】本题考查对推理类型的判断,属于基础题.6、B【解析】
由题意,知取0,1,2,3,利用超几何分布求出概率,即可求解.【详解】根据题意,故选:B.【点睛】本题考查利用超几何分布求概率,属基础题.7、B【解析】分析:利用定积分的运算求得m的值,再根据乘方的几何意义,分类讨论,求得xm﹣2yz项的系数.详解:3sinxdx=﹣3cosx=﹣3(cosπ﹣cos0)=6,则(x﹣2y+3z)m=(x﹣2y+3z)6,xm﹣2yz=x4yz.而(x﹣2y+3z)6表示6个因式(x﹣2y+3z)的乘积,故其中一个因式取﹣2y,另一个因式取3z,剩余的4个因式都取x,即可得到含xm﹣2yz=x4yz的项,∴xm﹣2yz=x4yz项的系数等于故选:B.点睛:这个题目考查的是二项式中的特定项的系数问题,在做二项式的问题时,看清楚题目是求二项式系数还是系数,还要注意在求系数和时,是不是缺少首项;解决这类问题常用的方法有赋值法,求导后赋值,积分后赋值等。8、D【解析】
根据正弦的倍角公式和三角函数的基本关系式,化为齐次式,即可求解,得到答案.【详解】由题意,可得,故选D.【点睛】本题主要考查了正弦的倍角公式,以及三角函数的基本关系式的化简、求值,着重考查了推理与运算能力,属于基础题.9、D【解析】
根据空间中直线与平面的位置关系的相关定理依次判断各个选项即可.【详解】两平行平面内的直线的位置关系为:平行或异面,可知错误;且,此时或,可知错误;,,,此时或,可知错误;两平行线中一条垂直于一个平面,则另一条必垂直于该平面,正确.本题正确选项:【点睛】本题考查空间中直线与平面、平面与平面位置关系的判定,考查学生对于定理的掌握程度,属于基础题.10、D【解析】
根据平移变换和伸缩变换的原则可求得的解析式,依次判断的最值、最小正周期、对称轴和单调性,可求得正确结果.【详解】函数向右平移个单位长度得:横坐标伸长到原来的倍得:最大值为,可知错误;最小正周期为,可知错误;时,,则不是的对称轴,可知错误;当时,,此时单调递增,可知正确.本题正确选项:【点睛】本题考查三角函数平移变换和伸缩变换、正弦型函数的单调性、对称性、值域和最小正周期的求解问题,关键是能够明确图象变换的基本原则,同时采用整体对应的方式来判断正弦型函数的性质.11、A【解析】试题分析:函数f(x)可以看作是动点M(x,lnx2)与动点N(A,2A)之间距离的平方,动点M在函数y=2lnx的图象上,N在直线y=2x的图象上,问题转化为求直线上的动点到曲线的最小距离,由y=2lnx得,y'==2,解得x=1,∴曲线上点M(1,0)到直线y=2x的距离最小,最小距离D=,则f(x)≥,根据题意,要使f()≤,则f()=,此时N恰好为垂足,由,解得考点:导数在最大值、最小值问题中的应用12、D【解析】
对函数求导,利用求得极值点,再检验是否为极小值点,从而求得极小值的范围.【详解】令,得,检验:当时,,当时,,所以的极小值点为,所以的极小值为,又.∵,∴,∴.选D.【点睛】本题考查利用导数判断单调性和极值的关系,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
直接代入即得答案.【详解】由于,代入,于是得到,故答案为1.7.【点睛】本题主要考查线性回归方程的理解,难度很小.14、【解析】
由抛物线定义可得,由此可知当为与抛物线的交点时,取得最小值,进而求得点坐标.【详解】由题意得:抛物线焦点为,准线为作,垂直于准线,如下图所示:由抛物线定义知:(当且仅当三点共线时取等号)即的最小值为,此时为与抛物线的交点故答案为【点睛】本题考查抛物线线上的点到焦点的距离与到定点距离之和最小的相关问题的求解,关键是能够熟练应用抛物线定义确定最值取得的位置.15、【解析】
先设数列的前项和为,先令,得出求出的值,再令,得出,结合的值和的通项的结构得出数列的通项公式。【详解】设数列的前项和为,则.当时,,,;当时,.也适合上式,.由于数列是等差数列,则是关于的一次函数,且数列是等比数列,,可设,则,,因此,。故答案为:。【点睛】本题考查利用前项和公式求数列的通项,一般利用作差法求解,即,在计算时要对是否满足通项进行检验,考查计算能力,属于中等题。16、8【解析】分析:根据椭圆的方程,得到,由知为直角三角形,在中利用勾股定理得|.再根据椭圆的定义得到,两式联解可得,由此即可得到Rt△F1PF2的面积为S=1.详解:∵椭圆方程为,且,可得
∵,∴…①
根据椭圆的定义,得|,
∴…②
②减去①,得,可得
即答案为:8点睛:本题给出椭圆的焦点三角形为直角三角形,求焦点三角形的面积.着重考查了椭圆的标准方程与简单几何性质等知识,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)由题意分别求得a,b的值即可确定椭圆方程;(2)解法一:由题意首先确定直线的方程,联立直线方程与圆的方程,确定点B的坐标,联立直线BF2与椭圆的方程即可确定点E的坐标;解法二:由题意利用几何关系确定点E的纵坐标,然后代入椭圆方程可得点E的坐标.【详解】(1)设椭圆C的焦距为2c.因为F1(-1,0),F2(1,0),所以F1F2=2,c=1.又因为DF1=,AF2⊥x轴,所以DF2=,因此2a=DF1+DF2=4,从而a=2.由b2=a2-c2,得b2=3.因此,椭圆C的标准方程为.(2)解法一:由(1)知,椭圆C:,a=2,因为AF2⊥x轴,所以点A的横坐标为1.将x=1代入圆F2的方程(x-1)2+y2=16,解得y=±4.因为点A在x轴上方,所以A(1,4).又F1(-1,0),所以直线AF1:y=2x+2.由,得,解得或.将代入,得,因此.又F2(1,0),所以直线BF2:.由,得,解得或.又因为E是线段BF2与椭圆的交点,所以.将代入,得.因此.解法二:由(1)知,椭圆C:.如图,连结EF1.因为BF2=2a,EF1+EF2=2a,所以EF1=EB,从而∠BF1E=∠B.因为F2A=F2B,所以∠A=∠B,所以∠A=∠BF1E,从而EF1∥F2A.因为AF2⊥x轴,所以EF1⊥x轴.因为F1(-1,0),由,得.又因为E是线段BF2与椭圆的交点,所以.因此.【点睛】本题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.18、(1)的单调增区间为,;单调减区间为(2)【解析】
(1)函数求导数,分别求导数大于零小于零的范围,得到单调区间.(2)根据(1)中的单调区间得到最大值.【详解】解:(1)当时,,或;当时,.∴的单调增区间为,;单调减区间为.(2)分析可知的递增区间是,,递减区间是,当时,;当时,.由于,所以当时,.【点睛】本题考查了函数的单调区间,最大值,意在考查学生的计算能力.19、(1).(2)或.【解析】试题分析:(1)由题意,利用等差数列和椭圆的定义求出a、c的关系,再根据椭圆C过点A,求出a、b的值,即可写出椭圆C的标准方程;(2)设P(x1,y1),Q(x2,y2),根据题意知x1=﹣2,y1=0;联立方程消去y,由方程的根与系数关系求得x2、y2,由点A在以PQ为直径的圆外,得∠PAQ为锐角,•>0;由此列不等式求出k的取值范围.试题解析:(1)∵,,成等差数列,∴,由椭圆定义得,∴;又椭圆:()过点,∴;∴,解得,;∴椭圆的标准方程为;(2)设,,联立方程,消去得:;依题意:恒过点,此点为椭圆的左顶点,∴,,①由方程的根与系数关系可得,;②可得;③由①②③,解得,;由点在以为直径的圆外,得为锐角,即;由,,∴;即,整理得,,解得:或.∴实数的取值范围是或.点睛:在圆锥曲线中研究范围,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时,常从以下方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的关键是两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;④利用基本不等式求出参数的取值范围;⑤利用函数的值域的求法,确定参数的取值范围.20、任意取出件产品作检验,至少有件是次品的概率是;为了保证使件次品全部检验出的概率超过,最少应抽取9件产品作检验。【解析】
(1)先求出任取3件的方法数,再求出任取的3件中没有次品的方法数,相减即得至少有一件次品的方法数,由此可得所求概率;(2)即抽取的产品中至少有3件次品的概率超过0.6,列式求解.【详解】(1)从1件产品中任取3件的方法数为,而3件产品中没有次品的方法数是,从而至少有1件次品的方法数是120-35=85,所求概率为.(2)设应抽取件产品,则,即,,∵,∴或1.至少抽取9件才能满足题意.∴任意取出件产品作检验,至少有件是次品的概率是,为了保证使件次品全部检验出的概率超过,最少应抽取9件产品作检验.【点睛】本题考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑装饰施工中的质量保证措施考核试卷
- 中药材种植的农业生态环境保护法制建设考核试卷
- 批发业务会计与财务管理考核试卷
- 文化空间营造考核试卷
- 体育运动训练中的运动康复技术考核试卷
- 体育航空运动飞行器空中交通管制操作考核试卷
- 宠物友好邮轮旅行船上宠物友好娱乐活动策划分享考核试卷
- 走路的安全课件
- 劳动合同补充合同范本
- 绿化租赁合同范本
- 筋膜刀的临床应用
- DB32-T 4790-2024建筑施工特种作业人员安全操作技能考核标准
- 2022年安徽阜阳太和县人民医院本科及以上学历招聘笔试历年典型考题及考点剖析附带答案详解
- 2024-2030年中国反刍动物饲料行业市场发展趋势与前景展望战略分析报告
- 护理团体标准解读-成人氧气吸入疗法护理
- 幼儿园大班《识字卡》课件
- 2024-2030全球与中国宠物医院市场现状及未来发展趋势
- 《研学旅行课程设计》课件-2认识研学旅行的参与方
- 安全警示教育的会议记录内容
- 夫妻异地辞职信
- 2024年度-银行不良清收技巧培训课件(学员版)
评论
0/150
提交评论