




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数的共轭复数在复平面上对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列函数中,既是偶函数,又是在区间上单调递减的函数为()A. B. C. D.3.某工厂生产某种产品的产量(吨)与相应的生产能耗(吨标准煤)有如下几组样本数据:根据相关检验,这组样本数据具有线性相关关系,通过线性回归分析,求得其回归直线的斜率为,则这组样本数据的回归直线方程是()A. B. C. D.4.下列点不在直线(t为参数)上的是()A.(-1,2) B.(2,-1)C.(3,-2) D.(-3,2)5.在中,若,则自然数的值是()A.7 B.8 C.9 D.106.已知命题,,命题q:若恒成立,则,那么()A.“”是假命题 B.“”是真命题C.“”为真命题 D.“”为真命题7.在等差数列中,如果,且,那么必有,类比该结论,在等比数列中,如果,且,那么必有()A. B.C. D.8.已知X的分布列为X-101P设Y=2X+3,则E(Y)的值为A. B.4 C.-1 D.19.已知复数满足(为虚数单位),则()A. B. C. D.10.已知向量是空间的一组基底,则下列可以构成基底的一组向量是()A.,, B.,,C.,, D.,,11.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,现从该正方形中任取一点,则此点取自黑色部分的概率是A. B.C. D.12.若是两个非零向量,且,则与的夹角为()A.30° B.45° C.60° D.90°二、填空题:本题共4小题,每小题5分,共20分。13.设,若,则实数________.14.把一个大金属球表面涂漆,共需公斤油漆,若把这个大金属球融化成个大小都相同的小金属球,不计损耗,把这些小金属球表面都涂漆,需要这种油漆_______公斤.15.已知定义域为的偶函数,其导函数为,满足,则的解集为_________.16.在处的导数值是___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为庆祝党的98岁生日,某高校组织了“歌颂祖国,紧跟党走”为主题的党史知识竞赛.从参加竞赛的学生中,随机抽取40名学生,将其成绩分为六段,,,,,,到如图所示的频率分布直方图.(1)求图中的值及样本的中位数与众数;(2)若从竞赛成绩在与两个分数段的学生中随机选取两名学生,设这两名学生的竞赛成绩之差的绝对值不大于分为事件,求事件发生的概率.(3)为了激励同学们的学习热情,现评出一二三等奖,得分在内的为一等奖,得分在内的为二等奖,得分在内的为三等奖.若将频率视为概率,现从考生中随机抽取三名,设为获得三等奖的人数,求的分布列与数学期望.18.(12分)如图,正方体的所有棱长都为1,求点A到平面的距离.19.(12分)已知在中,,,.(1)求边的长;(2)设为边上一点,且的面积为,求.20.(12分)设函数f(x)=x2+bln(x+1),其中b≠1.(1)若b=﹣12,求f(x)在[1,3]的最小值;(2)如果f(x)在定义域内既有极大值又有极小值,求实数b的取值范围.21.(12分)如图,在四面体中,在平面的射影为棱的中点,为棱的中点,过直线作一个平面与平面平行,且与交于点,已知,.(1)证明:为线段的中点(2)求平面与平面所成锐二面角的余弦值.22.(10分)为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班级进行教学实验,为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表:记成绩不低于70分者为“成绩优良”.分数[50,59)[60,69)[70,79)[80,89)[90,100]甲班频数56441乙班频数13655(1)由以上统计数据填写下面2×2列联表,并判断“成绩优良与教学方式是否有关”?甲班乙班总计成绩优良成绩不优良总计现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核.在这8人中,记成绩不优良的乙班人数为,求的分布列及数学期望.附:.临界值表
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
首先化简,再求找其对应的象限即可.【详解】,,对应的象限为第三象限.故选:C【点睛】本题主要考查复数对应的象限,同时考查复数的运算和共轭复数,属于简单题.2、A【解析】本题考察函数的单调性与奇偶性由函数的奇偶性定义易得,,是偶函数,是奇函数是周期为的周期函数,单调区间为时,变形为,由于2>1,所以在区间上单调递增时,变形为,可看成的复合,易知为增函数,为减函数,所以在区间上单调递减的函数故选择A3、C【解析】由题意可知,,线性回归方程过样本中心,所以只有C选项满足.选C.【点睛】线性回归方程过样本中心,所以可以代入四个选项进行逐一检验.4、D【解析】
先求出直线l的普通方程,再把点的坐标代入检验,满足则在直线l上,否则不在.【详解】直线l的普通方程为x+y-1=0,因此点(-3,2)的坐标不适合方程x+y-1=0.故答案为D【点睛】(1)本题主要考查参数方程和普通方程的互化,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2)参数方程消参常用的方法有三种:加减消参、代入消参、恒等式消参法.5、B【解析】
利用二项式的通项公式求出的表达式,最后根据,解方程即可求出自然数的值.【详解】二项式的通项公式为:,因此,,所以,解得.故选B.【点睛】本题考查了二项式定理的应用,考查了数学运算能力.6、D【解析】
分别判断命题的真假性,然后再判断每个选项的真假【详解】,即不存在,命题是假命题若恒成立,⑴时,,即符合条件⑵时,则解得,则命题为真命题故是真命题故选【点睛】本题考查了含有“或”“且”“非”命题的真假判定,只需将命题的真假进行判定出来即可,需要解答一元二次不等式,属于基础题.7、D【解析】分析:结合等差数列与等比数列具有的类比性,且等差数列与和差有关,等比数列与积商有关的特点,即可类比得到结论.详解:由题意,类比上述性质:在等比数列中,则由“如果,且”,则必有“”成立,故选D.点睛:本题主要考查了等差数列与等比数列之间的类比推理,其中类比推理的一般步骤:①找出等差数列与等比数列之间的相似性或一致性;②用等差数列的性质取推测等比数列的性质,得到一个明确的结论(或猜想).8、A【解析】由条件中所给的随机变量的分布列可知EX=﹣1×+0×+1×=﹣,∵E(2X+3)=2E(X)+3,∴E(2X+3)=2×(﹣)+3=.故答案为:A.9、C【解析】
整理得到,根据模长的运算可求得结果.【详解】由得:本题正确选项:【点睛】本题考查向量模长的求解,属于基础题.10、C【解析】
空间的一组基底,必须是不共面的三个向量,利用向量共面的充要条件可证明、、三个选项中的向量均为共面向量,利用反证法可证明中的向量不共面【详解】解:,,,共面,不能构成基底,排除;,,,共面,不能构成基底,排除;,,,共面,不能构成基底,排除;若、,共面,则,则、、为共面向量,此与为空间的一组基底矛盾,故、,可构成空间向量的一组基底.故选:.【点睛】本题主要考查了空间向量基本定理,向量共面的充要条件等基础知识,判断向量是否共面是解决本题的关键,属于中档题.11、A【解析】设,则.∴,∴所求的概率为故选A.12、A【解析】
画出图像:根据计算夹角为,再通过夹角公式计算与的夹角.【详解】形成一个等边三角形,如图形成一个菱形.与的夹角为故答案选A【点睛】本题考查了向量的加减和夹角,通过图形可以简化运算.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
将左右两边的函数分别求导,取代入导函数得到答案.【详解】两边分别求导:取故答案为【点睛】本题考查了二项式定理的计算,对两边求导是解题的关键.14、【解析】
根据大金属球和64个小金属球体积相同,求半径的比值,再求大金属球和64个小金属球的表面积比值,最后求油漆数量.【详解】,,,.故答案为:【点睛】本题考查球的体积和表面积的实际应用问题,重点考查表面积和体积公式,关键是利用前后体积相等求半径的比值,属于基础题型.15、【解析】
令,对函数求导,根据条件可得单调递增,且单调递增,进而利用单调性和奇偶性求解.【详解】的解集为的解集,令,则,因为,所以当时有,所以,即当时,单调递增,又因为,所以,所以的解集为的解集,由单调性可知,又因为为偶函数,所以解集为【点睛】本题解题的关键是构造新函数,求导进而得出函数的单调性,然后利用奇偶性和单调性求解.16、【解析】
利用导数的运算法则及导数的公式求出导函数,再令导函数中的,即可求出导数值.【详解】因为函数所以所以在处的导数值是,故答案为.【点睛】本题主要考查导数的运算法则以及基本初等函数的导数,属于简单题.求函数的导数值时,先根据函数的形式选择合适的导数运算法则及导数公式,再求导数值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)0.06;87.5;87.5;(2);(3)详见解析【解析】
(1)根据小矩形的面积之和等于1,列出方程,求得的值,根据中位数定义估计中位数的范围,在列出方程求解中位数,再根据众数的定义,即可求解.(2)计算两组的人数,再计算抽取的两人在同一组的概率,即可求解;(3)根据题意,得到随机变量服从二项分布,再利用二项分布的期望公式,即可求解.【详解】(1)由频率分布直方图可知,解得,可知样本的中位数在第4组中,不妨设为,则,解得,即样本的中位数为,由频率分布直方图可知,样本的众数为.(2)由频率分布直方图可知,在与两个分数段的学生人数分别为和,设中两名学生的竞赛成绩之差的绝对值不大于5分为事件M,则事件M发生的概率为,即事件M发生的概率为.(3)从考生中随机抽取三名,则随机变量为获得三等奖的人数,则,由频率分布直方图知,从考升中任抽取1人,此生获得三等奖的概率为,所以随机变量服从二项分布,则,,所以随机变量的分布列为01230.3430.4410.1890.027所以.【点睛】本题主要考查了频率分布直方图的应用,以及随机变量的分布列及其数学期望的求解,其中解答中认真审题,熟练频率分布直方图的性质,正确确定随机变量的取值,求得相应的概率,得出随机变量的分布列是解答的关键,着重考查了推理与运算能力,属于基础题.18、【解析】
由题意首先求得三棱锥的体积,然后利用等体积法即可求得点A到平面的距离.【详解】由题意可得,三棱锥的体积,且是边长为的等边三角形,其面积,设点A到平面的距离为,利用等体积法可得:,则.即点A到平面的距离为.【点睛】本题主要考查点面距离的计算,等体积法的应用等知识,意在考查学生的转化能力和计算求解能力.19、(1)3;(2).【解析】
(1)利用三角形内角和定理,将转化为,化简已知条件求得,然后求得,利用等腰三角形求得的长.(2)利用三角形面积列方程,求得的值,利用余弦定理求得的值,利用正弦定理求得的值.【详解】解:(1)由及,得,展开得,即,所以.所以,即,所以.(2)由,解得.在中,,所以.由,得,所以.【点睛】本小题主要考查三角形内角和定理,考查三角恒等变换,考查利用余弦定理和正弦定理解三角形,综合性较强,属于中档题.20、(1)4﹣12ln2(2)【解析】
(1)当b=﹣12时令由得x=2则可判断出当x∈[1,2)时,f(x)单调递减;当x∈(2,2]时,f(x)单调递增故f(x)在[1,2]的最小值在x=2时取得;(2)要使f(x)在定义域内既有极大值又有极小值即f(x)在定义域内与X轴有三个不同的交点即使在(﹣1,+∞)有两个不等实根即2x2+2x+b=1在(﹣1,+∞)有两个不等实根这可以利用一元二次函数根的分布可得解之求b的范围.【详解】解:(1)由题意知,f(x)的定义域为(1,+∞)b=﹣12时,由,得x=2(x=﹣2舍去),当x∈[1,2)时f′(x)<1,当x∈(2,2]时,f′(x)>1,所以当x∈[1,2)时,f(x)单调递减;当x∈(2,2]时,f(x)单调递增,所以f(x)min=f(2)=4﹣12ln2.(2)由题意在(﹣1,+∞)有两个不等实根,即2x2+2x+b=1在(﹣1,+∞)有两个不等实根,设g(x)=2x2+2x+b,则,解之得【点睛】本题第一问较基础只需判断f(x)在定义域的单调性即可求出最小值.而第二问将f(x)在定义域内既有极大值又有极小值问题利用数形结合的思想转化为f(x)在定义域内与X轴有三个不同的交点即在(﹣1,+∞)有两个不等实根即2x2+2x+b=1在(﹣1,+∞)有两个不等实根此时可利用一元二次函数根的分布进行求解.21、(1)见解析(2)【解析】分析:(1)根据题中两面平行的条件,结合面面平行的性质,得到线线平行,其中一个点是中点,那就是三角形的中位线,从而得到一定为中点;(2)利用题中所给的相关的垂直的条件,建立相应的坐标系,求得面的法向量,利用法向量所成角的余弦值得到对应二面角的余弦值.详解:(1)证明:平面平面,平面平面,平面平面,,为的中点,为的中点.(2)解:为的中点,,以为坐标原点,建立空间直角坐标系,如图所示,则,,,易求得,,设平面的法向量为,则,即,令,得.设平面的法向量为,则,即,令,得,又平面平面,平面与平面所成锐二面角的余弦值为.点睛:该题考查的是有关立体几何的问题,涉及到的知识点有面面平行的性质、三角形中位线的平行性以及应用空间向量求二面角的余弦值,在求解的过程中,需要对定理的条件和结论要熟悉,以及空间角的向量求法要掌握.22、(1)在犯错概率不超过0.05的前提下认为“成绩优良与教学方式有关”.(2)见解析【解析】
(1)根据数据对应填写,再根据卡方公式求,最后对照参考数据作判断,(2)先根据分层抽样得成绩不优良的人数,再确定随机变量取法,利用组合数求对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 耐久跑文化节庆活动策划计划
- 夫妻间忠诚协议及财产保全及子女抚养权争议处理及离婚冷静期协议
- 医疗废物处理与区块链追踪合作协议
- 人教版英语下册学情分析计划
- 初中年级组长素质教育实施计划
- 企业员工健康管理2025年新策略
- 2025年磁粉探伤机项目提案报告模板
- 2025年离合器面片项目规划申请报告模板
- DB64-T 2135-2025“互联网+城乡供水”工程设计报告编制技术导则
- 2025年重氮化合物项目规划申请报告
- 红旅赛道未来规划
- GIS安装标准化作业指导书
- 带电作业施工方案
- 宏定义与跨平台开发
- 腰椎病护理措施
- 社保费扣费协议书范文范本下载
- 2024年全国寄生虫病防治技能竞赛备赛试题库-上(血吸虫病、疟疾)
- 【一等奖课件】《刑事摄像技术》比赛课题:现场照相内容及方法
- 手术室环境清洁与消毒课件
- DB23T 3844-2024 煤矿地区地震(矿震)监测台网技术要求
- 工商企业管理毕业论文范文(4篇)
评论
0/150
提交评论