2023届河北省望都中学数学高二下期末检测模拟试题含解析_第1页
2023届河北省望都中学数学高二下期末检测模拟试题含解析_第2页
2023届河北省望都中学数学高二下期末检测模拟试题含解析_第3页
2023届河北省望都中学数学高二下期末检测模拟试题含解析_第4页
2023届河北省望都中学数学高二下期末检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若向量,满足,与的夹角为,则等于()A. B. C.4 D.122.如图,在平面直角坐标系中,质点间隔3分钟先后从点,绕原点按逆时针方向作角速度为弧度/分钟的匀速圆周运动,则与的纵坐标之差第4次达到最大值时,运动的时间为()A.37.5分钟 B.40.5分钟 C.49.5分钟 D.52.5分钟3.已知函数,则的大致图像是()A. B. C. D.4.的展开式中第5项的二项式系数是()A. B. C. D.5.将函数的图象上所有的点向左平移个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图象的解析式为()A. B.C. D.6.定义在上的函数,单调递增,,若对任意,存在,使得成立,则称是在上的“追逐函数”.若,则下列四个命题:①是在上的“追逐函数”;②若是在上的“追逐函数”,则;③是在上的“追逐函数”;④当时,存在,使得是在上的“追逐函数”.其中正确命题的个数为()A.①③ B.②④ C.①④ D.②③7.将函数的图象向左平移个单位长度后得到函数的图象,则的最小值为()A. B. C. D.8.已知关于的方程为(其中),则此方程实根的个数为()A.2 B.2或3 C.3 D.3或49.函数在上取得最小值时,的值为().A.0 B. C. D.10.若圆锥的高等于底面直径,侧面积为,则该圆锥的体积为A. B. C. D.11.下列关于积分的结论中不正确的是()A. B.C.若在区间上恒正,则 D.若,则在区间上恒正12.在一次试验中,测得的四组值分别是A(1,2),B(3,4),C(5,6)D(7,8),则y与x之间的回归直线方程为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.二项式的展开式中的系数为15,则等于______.14.设某同学选择等级考科目时,选择物理科目的概率为0.5,选择化学科目的概率为0.6,且这两个科目的选择相互独立,则该同学在这两个科目中至少选择一个的概率是________15.在的二项式中,常数项等于_______(结果用数值表示).16.三角形中,是边上一点,,,且三角形与三角形面积之比为,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,数列的前项和为,点()均在函数的图像上.(1)求数列的通项公式;(2)设,是数列的前项和,求使得对所有都成立的最小正整数.18.(12分)设函数,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=1.(1)求y=f(x)的解析式;(2)证明:曲线y=f(x)上任一点处的切线与直线x=1和直线y=x所围成的三角形面积为定值,并求此定值.19.(12分)如图,点在以为直径的圆上,垂直与圆所在平面,为的垂心(1)求证:平面平面;(2)若,求二面角的余弦值.20.(12分)在中国绿化基金会的支持下,库布齐沙漠得到有效治理.2017年底沙漠的绿化率已达,从2018年开始,每年将出现这样的情况,上一年底沙漠面积的被栽上树改造为绿洲,而同时,上一年底绿洲面积的又被侵蚀,变为沙漠.(1)设库布齐沙漠面积为1,由绿洲面积和沙漠面积构成.2017年底绿洲面积为,经过1年绿洲面积为,经过n年绿洲面积为,试用表示;(2)问至少需要经过多少年的努力才能使库布齐沙漠的绿洲面积超过(年数取整数).21.(12分)已知函数.(1)求的值;(2)将函数的图象沿轴向右平移个单位长度,得到函数的图象,求在上的最大值和最小值.22.(10分)如图所示,四边形为菱形,且,,,且,平面.(1)求证:平面平面;(2)求平面与平面所成锐二面角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

将平方后再开方去计算模长,注意使用数量积公式.【详解】因为,所以,故选:B.【点睛】本题考查向量的模长计算,难度一般.对于计算这种形式的模长,可通过先平方再开方的方法去计算模长.2、A【解析】

分析:由题意可得:yN=,yM=,计算yM﹣yN=sin,即可得出.详解:由题意可得:yN=,yM=∴yM﹣yN=yM﹣yN=sin,令sin=1,解得:=2kπ+,x=12k+,k=0,1,2,1.∴M与N的纵坐标之差第4次达到最大值时,N运动的时间=1×12+=17.5(分钟).故选A.点睛:本题考查了三角函数的图象与性质、和差公式、数形结合方法,考查了推理能力与计算能力,属于中档题.也查到了三角函数的定义的应用,三角函数的定义指的是单位圆上的点坐标和这一点的旋转角之间的关系.3、C【解析】

利用函数值的正负及在单调递减,选出正确答案.【详解】因为,排除A,D;,在同一个坐标系考查函数与的图象,可得,在恒成立,所以在恒成立,所以在单调递减排除B,故选C.【点睛】根据解析式选函数的图象是高考的常考题型,求解此类问题没有固定的套路,就是要利用数形结合思想,从数到形、从形到数,充分提取有用的信息.4、D【解析】试题分析:由二项展开式的通项公式得,第5项的二项式系数为.考点:二项式定理.5、B【解析】试题分析:函数,的图象上所有点向左平移个单位长度得,再把图象上各点的横坐标扩大到原来的2倍,得,选B.考点:三角函数图像变换6、B【解析】

由题意,分析每一个选项,首先判断单调性,以及,再假设是“追逐函数”,利用题目已知的性质,看是否满足,然后确定答案.【详解】对于①,可得,在是递增函数,,若是在上的“追逐函数”;则存在,使得成立,即,此时当k=100时,不存在,故①错误;对于②,若是在上的“追逐函数”,此时,解得,当时,,在是递增函数,若是“追逐函数”则,即,设函数即,则存在,所以②正确;对于③,在是递增函数,,若是在上的“追逐函数”;则存在,使得成立,即,当k=4时,就不存在,故③错误;对于④,当t=m=1时,就成立,验证如下:,在是递增函数,,若是在上的“追逐函数”;则存在,使得成立,即此时取即,故存在存在,所以④正确;故选B【点睛】本题主要考查了对新定义的理解、应用,函数的性质等,易错点是对新定义的理解不到位而不能将其转化为两函数的关系,实际上对新定义问题的求解通常是将其与已经学过的知识相结合或将其表述进行合理转化,从而更加直观,属于难题.7、C【解析】

根据题意得到变换后的函数解析式,利用诱导公式求得结果【详解】由题,向左平移不改变周期,故,平移得到,,当时,,故选C【点睛】本题考查函数的图象变换规律,利用诱导公式完成正、余弦型函数的转化8、C【解析】分析:将原问题转化为两个函数交点个数的问题,然后利用导函数研究函数的性质即可求得最终结果.详解:很明显不是方程的根,据此可将方程变形为:,原问题等价于考查函数与函数的交点的个数,令,则,列表考查函数的性质如下:++-++单调递增单调递增单调递减单调递减单调递增函数在有意义的区间内单调递增,故的单调性与函数的单调性一致,且函数的极值绘制函数图像如图所示,观察可得,与函数恒有3个交点,即题中方程实根的个数为3.本题选择C选项.点睛:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.9、D【解析】

根据三角函数的单调性分析求解即可.【详解】当时,.根据正弦函数的性质可知,当,即时,取得最小值.故选:D【点睛】本题主要考查了三角函数的最值问题,属于基础题.10、B【解析】

先设底面半径,然后根据侧面积计算出半径,即可求解圆锥体积.【详解】设圆锥的底面半径为,则高为,母线长;又侧面积,所以,所以,故选:B.【点睛】本题考查圆锥的侧面积公式应用以及体积的求解,难度一般.圆锥的侧面积公式:,其中是底面圆的半径,是圆锥的母线长.11、D【解析】

结合定积分知识,对选项逐个分析可选出答案.【详解】对于选项A,因为函数是R上的奇函数,所以正确;对于选项B,因为函数是R上的偶函数,所以正确;对于选项C,因为在区间上恒正,所以图象都在轴上方,故正确;对于选项D,若,可知的图象在区间上,在轴上方的面积大于下方的面积,故选项D不正确.故选D.【点睛】本题考查了定积分,考查了函数的性质,属于基础题.12、A【解析】分析:根据所给的这组数据,取出这组数据的样本中心点,把样本中心点代入所给的四个选项中验证,若能够成立的只有一个,这一个就是线性回归方程.详解:∵,∴这组数据的样本中心点是(4,5)把样本中心点代入四个选项中,只有y=x+1成立,故选A.点睛:本题考查求线性回归方程,一般情况下是一个运算量比较大的问题,解题时注意平均数的运算不要出错,注意系数的求法,运算时要细心,但是对于一个选择题,还有它特殊的加法.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】

根据题意,展开式的通项为,令即可求解可得答案.【详解】根据题意,展开式的通项为,令,则故答案为1.【点睛】本题考查二项式定理的应用,注意二项式的展开式的形式,区分某一项的系数与二项式系数.14、0.8【解析】

根据相互独立事件概率的计算公式,及对立事件的概率求法,即可求解.【详解】因为选择物理科目的概率为0.5,选择化学科目的概率为0.6,所以既不选择物理也不选择化学的概率为所以由对立事件的性质可知至少选择一个科目的概率为故答案为:【点睛】本题考查了独立事件的概率求法,对立事件的性质应用,属于基础题.15、140【解析】

写出二项展开式的通项,由的指数为0求得r值,则答案可求.【详解】由得由6-3r=0,得r=1.

∴常数项等于,故答案为140.【点睛】本题考查了二项式系数的性质,关键是对二项展开式通项的记忆与运用,是基础题.16、【解析】分析:为的平分线,从而,根据余弦定理可得到,两者结合可解出并求出,在中,由余弦定理可求出的长度.详解:因为为的平分线,故.又,整理得,所以,故.又,故.填.点睛:(1)在中,若为的平分线(为上一点),则有;(2)在解三角形中,我们有时需要找出不同三角形之间相关联的边或角,由它们沟通分散在不同三角形的几何量.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)1.【解析】分析:(1)由已知条件推导出,由此能求出;(2)由,利用裂项求和法求出,由此能求出满足要求的最小整数.详解:(1)当时,当时,符合上式综上,(2)所以由对所有都成立,所以,得,故最小正整数的值为.点睛:利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.18、(1);(2)证明见解析.【解析】解:(1)方程7x-4y-12=1可化为y=x-3,当x=2时,y=.又f′(x)=a+,于是,解得故f(x)=x-.(2)证明:设P(x1,y1)为曲线上任一点,由f′(x)=1+知,曲线在点P(x1,y1)处的切线方程为y-y1=(1+)·(x-x1),即y-(x1-)=(1+)(x-x1).令x=1得,y=-,从而得切线与直线x=1,交点坐标为(1,-).令y=x,得y=x=2x1,从而得切线与直线y=x的交点坐标为(2x1,2x1).所以点P(x1,y1)处的切线与直线x=1,y=x所围成的三角形面积为|-||2x1|=2.曲线y=f(x)上任一点处的切线与直线x=1和直线y=x所围成的三角形面积为定值,此定值为2.19、(1)见解析(2).【解析】试题分析:(1)延长交于点,由重心性质及中位线性质可得,再结合圆的性质得,由已知,可证平面,进一步可得平面平面(2)以点为原点,,,方向分别为,,轴正方向建立空间直角坐标系,写出各点坐标,利用二面角与二个半平面的法向量的夹角间的关系可求二面角的余弦值.试题解析:(1)如图,延长交于点.因为为的重心,所以为的中点.因为为的中点,所以.因为是圆的直径,所以,所以.因为平面,平面,所以.又平面,平面=,所以平面.即平面,又平面,所以平面平面.(2)以点为原点,,,方向分别为,,轴正方向建立空间直角坐标系,则,,,,,,则,.平面即为平面,设平面的一个法向量为,则令,得.过点作于点,由平面,易得,又,所以平面,即为平面的一个法向量.在中,由,得,则,.所以,.所以.设二面角的大小为,则.点睛:若分别二面角的两个半平面的法向量,则二面角的大小满足,二面角的平面角的大小是的夹角(或其补角,需根据观察得出结论).在利用向量求空间角时,建立合理的空间直角坐标系,正确写出各点坐标,求出平面的法向量是解题的关键.20、(1)(2)至少需要经过5年的努力.【解析】

(1)根据变化规律确定与关系;(2)先根据递推关系构造一个等比数列,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论