版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省秦皇岛市木井乡中学高二数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图所示,圆O的直径AB=6,C为圆周上一点,BC=3,过C作圆的切线l,过A作l的垂线AD,垂足为D,则∠DAC=(
)A.
B.
C.
D.参考答案:B2.定义在R上的连续可导函数f(x),若当时,有,则下列各项正确的是(
)A. B.C. D.与大小关系不定参考答案:A【分析】根据可得的单调性,由函数连续可知,进而得到结果.【详解】由得:当时,;当时,则在上单调递增,在上单调递减在上连续
即,
本题正确选项:【点睛】本题考查根据函数的单调性比较大小的问题,易错点是忽略函数连续的条件,造成的大小无法确定.3.某空间几何体的三视图如图所示,则该几何体的体积为(
)(A)
(B)
(C)
(D)参考答案:B4.数列{an}的通项公式是an=(n∈N+),若前n项的和为10,则项数n为(
)A.11 B.99 C.120 D.121参考答案:C【考点】数列的求和.【专题】方程思想;作差法;等差数列与等比数列.【分析】运用分母有理化可得an=﹣,再由裂项相消求和可得前n项的和为Sn,由Sn,=10,解方程可得n.【解答】解:an==﹣,前n项的和为Sn=﹣1+﹣+2﹣+…+﹣=﹣1,由题意可得﹣1=10,解得n=120.故选:C.【点评】本题考查数列的求和方法:裂项相消求和,考查运算能力,属于中档题.5.在平面xOy内,向图形x2+y2≤4内投点,则点落在由不等式组所确定的平面区域的概率为()A. B. C. D.参考答案:D【考点】几何概型.【专题】数形结合;转化法;概率与统计.【分析】根据几何概型的概率公式求出相应的面积,即可得到结论.【解答】解:作出不等式组对应的平面区域如图:则不等式组对应平面区域的面积为,则实验成功的概率为=.故选:D.【点评】本题主要考查概率的计算,利用几何概型的概率公式是解决本题的关键,利用数形结合是解决本题的突破.6.设满足约束条件,则的最小值是(
)A.-15
B.-9
C.1
D.9参考答案:A画出可行域,令画出直线,平移直线,由于,直线的截距最小时最小,得出最优解为,,选A.
7.若椭圆与双曲线的离心率之积等于1,则称这组椭圆和双曲线为孪生曲线.已知曲线C1:与双曲线C2是孪生曲线,且曲线C2与曲线C1的焦点相同,则曲线C2的渐近线方程为A. B. C. D.参考答案:D8.设为等差数列的前项和,若,公差,,则(
)A.
B.
C.
D.参考答案:D9.为了得到这个函数的图象,只要将的图象上所有的点
(
)
(A)向左平移个单位长度,再把所得各点横坐标缩短到原来的倍,纵坐标不变(B)向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变(C)向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变(D)向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变参考答案:A10.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分成6组:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]加以统计,得到如图所示的频率分布直方图.已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为(
)A.588 B.480 C.450 D.120参考答案:B【考点】频率分布直方图.【专题】图表型.【分析】根据频率分布直方图,成绩不低于60分的频率,然后根据频数=频率×总数可求出所求.【解答】解:根据频率分布直方图,成绩不低于60(分)的频率为1﹣10×(0.005+0.015)=0.8.
由于该校高一年级共有学生600人,利用样本估计总体的思想,可估计该校高一年级模块测试成绩不低于60(分)的人数为600×0.8=480人.故选B.【点评】本小题主要考查频率、频数、统计和概率等知识,考查数形结合、化归与转化的数学思想方法,以及运算求解能力.二、填空题:本大题共7小题,每小题4分,共28分11.已知两个圆C1、C2的方程分别为C1:x2+y2+4x-6y+5=0,C2:x2+y2-6x+4y+11=0,点P、Q分别在C1、C2上运动,则|PQ|的最大值为_________。参考答案:812.若复数满足(为虚数单位),则的共轭复数为
▲
.参考答案:略13.在长方体ABCD-A1B1C1D1中,,,则异面直线AD1与DB1所成角的余弦值为_________.参考答案:分析:以为坐标原点,为轴,为轴,为轴建立空间坐标系,求出,利用空间向量夹角余弦公式可得结果.详解:如图,为坐标原点,为轴,为轴,为轴建立空间坐标系,,,,设异面直线与成角为,,故答案为.点睛:本题主要考查异面直线所成的角立体几何解题的“补型法”,属于难题.求异面直线所成的角主要方法有两种:一是向量法,根据几何体的特殊性质建立空间直角坐标系后,分别求出两直线的方向向量,再利用空间向量夹角的余弦公式求解;二是传统法,利用平行四边形、三角形中位线等方法找出两直线成的角,再利用平面几何性质求解.14.若,则
▲
。参考答案:15.圆截直线所得的弦长为
.参考答案:16.已知,且,则的最大值为参考答案:
,略17.由三角形的性质通过类比推理,得到四面体的如下性质:四面体的六个二面角的平分面交于一点,且这个点是四面体内切球的球心,那么原来三角形的性质为
.参考答案:三角形内角平分线交于一点,且这个点是三角形内切圆的圆心三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.每个星期六早上8点到下午6点之间,郑鲁力同学随机抽时间去乒乓球室打一个小时的乒乓球,而艾四忠同学随机抽时间去该乒乓球室打两个小时的乒乓球.求他们在乒乓球室打球相遇的概率.参考答案:早上8时到下午6时总共10个小时,为简化运算起见,把时间换作0--10令郑鲁力与艾四中进入乒乓球室的时刻依次为x,y,则有(1),而他们二人相遇的条件是,或者(1)确定的可行域为如图的正方形.而两人相遇的可行域为阴影部分所以两相遇的概率为:19.(本小题满分12分)某校从参加高二年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段,[40,50),[50,60),…[90,100]后画出如下图的频率分布直方图,观察图形,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的合格率(60分及60分以上为合格);(3)把90分以上(包括90分)视为成绩优秀,那么从成绩是60分以上(包括60分)的学生中选一人,求此人成绩优秀的概率.参考答案:(1)因为各组的频率和等于1,故第四组的频率:f4=1﹣(0.025+0.01×52+0.01+0.005)×10=0.3直方图如图所示
(2)依题意,60及以上的分数所在的第三、四、五、六组,频率和为(0.015+0.03+0.025+0.005)*10=0.75所以,抽样学生成绩的合格率是75%.
(3)[60,70),[70,80),[80,90),[90,100]”的人数是9,18,15,3.所以从成绩是(60分)以上(包括60分)的学生中选一人,该生是优秀学生的概率是
20.给定直线m:y=2x﹣16,抛物线:y2=2px(p>0).(1)当抛物线的焦点在直线m上时,确定抛物线的方程;(2)若△ABC的三个顶点都在(1)所确定的抛物线上,且点A的纵坐标y=8,△ABC的重心恰在抛物线的焦点上,求直线BC的方程.参考答案:【考点】抛物线的简单性质.【专题】计算题;圆锥曲线的定义、性质与方程.【分析】(1)由抛物线解析式表示出抛物线焦点坐标,代入直线m方程求出p的值,即可确定出抛物线解析式;(2)把A纵坐标代入抛物线解析式确定出横坐标,进而确定出A坐标,根据F为△ABC重心坐标,列出关系式,将A坐标代入整理得到B与C横纵坐标关系,再将B与C代入抛物线解析式,整理求出直线BC斜率,再利用中点坐标公式求出BC中点坐标,即可确定出直线BC解析式.【解答】解:(1)抛物线:y2=2px(p>0)的焦点坐标为(,0),代入直线m得:p﹣16=0,即p=16,则抛物线解析式为y2=32x;(2)把y=8代入抛物线解析式得:x=2,即A(2,8),∵F(8,0)为△ABC的重心,∴,整理得:,由,整理得(yB+yC)(yB﹣yC)=32(xB﹣xC),即==﹣4=kBC,∵BC的中点坐标为(11,﹣4),∴BC的直线方程为y+4=﹣4(x﹣11),即4x+y﹣40=0.【点评】此题考查了抛物线的简单性质,直线的斜率,中点坐标公式,以及直线的点斜式方程,熟练掌握抛物线的简单性质是解本题的关键.21.从装有大小相同的2个红球和6个白球的袋子中,每摸出2个球为一次试验,直到摸出的球中有红球(不放回),则实验结束(1)求第一次实验恰好摸到1个红球和1个白球的概率;(2)记实验次数为X,求X的分布列及数学期望.参考答案:(1);(2)的分布列为
1
2
3
4
试题分析:解:(I)………………4分(II);;;;X的分布列为X
1
2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 出纳实操培训
- 《除尘装置李丹》课件
- 《吉尔吉斯课件JUNE》课件
- 企业安全教育知识培训教案课件
- 《光合作用主要考点》课件
- GPT4专题报告:构建模型理解能力
- 单位常用应用文写作培训
- 数学学案:课堂导学比较法
- 《线路种类及线间距》课件
- 外贸安全培训课件
- 《算法设计与分析基础》(Python语言描述) 课件 第6章分支限界法
- 2024年福建省残疾人岗位精英职业技能竞赛(美甲师)参考试题库(含答案)
- 2024秋期国家开放大学专科《液压与气压传动》一平台在线形考(形考任务+实验报告)试题及答案
- 田径训练论文开题报告
- 个人健康管理平台使用操作教程
- 新版《铁道概论》考试复习试题库(含答案)
- DB11T 2315-2024消防安全标识及管理规范
- 商业银行开展非法集资风险排查活动情况报告
- 有理数的概念 说课课件2024-2025学年人教版数学七年级上册
- 防范工贸行业典型事故三十条措施解读
- 2024年公选处级领导干部面试题选及参考答案
评论
0/150
提交评论