河北省石家庄市九门回族乡中学高二数学理期末试卷含解析_第1页
河北省石家庄市九门回族乡中学高二数学理期末试卷含解析_第2页
河北省石家庄市九门回族乡中学高二数学理期末试卷含解析_第3页
河北省石家庄市九门回族乡中学高二数学理期末试卷含解析_第4页
河北省石家庄市九门回族乡中学高二数学理期末试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省石家庄市九门回族乡中学高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.下列有关命题的说法正确的是(

命题P:“若,则”,命题q是p的否命题.A.是真命题

B.q是假命题C.p是真命题

D.是真命题参考答案:D2.已知双曲线x2﹣=1(b>0)的离心率,则b等于(

) A.2 B.3 C.4 D.5参考答案:B考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:由双曲线x2﹣=1(b>0)的离心率,可得a=1,c=,求出b,即可求出b的值.解答: 解:∵双曲线x2﹣=1(b>0)的离心率为,∴a=1,c=,∴b==3,故选:B.点评:本题主要考查双曲线的简单性质的应用,属于基础题.3.若a<0,则0.5a、5a、5﹣a的大小关系是()A.5﹣a<5a<0.5a B.5a<0.5a<5﹣a C.0.5a<5﹣a<5a D.5a<5﹣a<0.5a参考答案:B【考点】4B:指数函数的单调性与特殊点;71:不等关系与不等式.【分析】先化同底数的幂形式,再根据幂函数的单调性比较大小即可.【解答】解:∵5﹣a==0.2a,0.2<0.5<5,又∵幂函数y=xa,a<0时,在(0,+∞)上单调递减,∴5a<0.5a<0.2﹣a,故选B.4.已知集合,直线与双曲线有且只有一个公共点,其中,则满足上述条件的双曲线共有

)A.4条

B.3条

C.2条

D.1条参考答案:A略5.在等比数列中,其前项的和为,且,,则数列的前项和为(

)A.

B.

C.

D.参考答案:C略6.设z=x+y,其中x,y满足当z的最大值为6时,的值为(

A.3

B.4

C.5

D.6参考答案:A略7.若随机变量X~N(1,σ2),且P(0<X≤3)=0.7989,则P(﹣1<X≤2)=()A.0.7989B.0.2011C.0.2021D.以上答案均不对参考答案:A考点:正态分布曲线的特点及曲线所表示的意义.分析:根据X~N(1,σ2),可得图象关于x=1对称,利用P(0<X≤3)=0.7989,即可求得结论.解答:解:根据正态分布N(1,σ2)的密度函数的图象的对称性可得,∵X~N(1,σ2),∴图象关于x=1对称∴P(﹣1<X≤2)=P(0<X≤3)=0.7989.故选A.点评:本题主要考查正态分布的图象,利用正态曲线的对称性是解题的关键.8.若函数有极大值点和极小值点,则导函数的大致图象可能为(

)A. B.C. D.参考答案:C【详解】分析:首先确定所给函数的导函数为二次函数,然后结合函数的极值确定函数的单调性,由函数的单调性即可确定函数的大致图象.详解:三次函数的导函数为二次函数,其图象与轴有两个交点,结合函数的极值可知函数在区间上单调递增,在区间上单调递减,在区间上单调递增;则导函数在区间上为正数,在区间上为负数,在区间上为正数;观察所给的函数图象可知,只有C选项符合题意.本题选择C选项.9.若等差数列的前5项和=(

) A.12 B.13 C.14 D.15参考答案:B10.设为等差数列的前n项的和,,,则的值为(

)A.2014

B.-2014

C.2013

D.-2013参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.设实数a、b、c满足a+b+c=1,则a、b、c中至少有一个数不小于.(填具体数字)参考答案:【考点】反证法的应用;进行简单的合情推理.【分析】根据题意,通过反证法,通过得出与已知a+b+c=1矛盾,可得结论.【解答】解:假设a、b、c都大于,则a+b+c>1,这与已知a+b+c=1矛盾.假设a、b、c都小于,则a+b+c<1,这与已知a+b+c=1矛盾.故a、b、c中至少有一个数不小于.故答案为:.12.一个几何体的三视图如右图所示,则该几何体的体积为

.

参考答案:13.在中,若角满足,则的形状一定是____________.参考答案:等腰直角三角形略14.设圆的切线与轴的正半轴、轴的正半轴分别交于点,当取最小值时,切线的方程为________________。参考答案:15.设,若函数有大于零的极值点,则m的取值范围是____.参考答案:16.设Z1,Z2是复数,下列命题:①若|Z1﹣Z2|=0,则=②若Z1=,则=Z2③若|Z1|=|Z2|,则Z1=Z2④若|Z1|=|Z2|,则Z12=Z22以上真命题序号_________.参考答案:17.已知直线与平面区域C:的边界交于A,B两点,若,则的取值范围是

.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在△ABC中,∠ABC=60°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90°.(1)证明:平面ADB⊥平面BDC;(2)设E为BC的中点,求与夹角的余弦值.参考答案:(1)见解析(2)(1)确定图形在折起前后的不变性质,如角的大小不变,线段长度不变,线线关系不变,再由面面垂直的判定定理进行推理证明;(2)在(1)的基础上确定出三线两两垂直,建立空间直角坐标系,利用向量的坐标和向量的数量积运算求解.(1)∵折起前AD是BC边上的高,∴当△ABD折起后,

AD⊥DC,AD⊥DB,又,∴AD⊥平面BDC,∵AD平面ABD,∴平面ABD⊥平面BDC.(2)由∠BDC及(1)知DA,DB,DC两两垂直,不妨设|DB|=1,以D为坐标原点,以,,所在直线为轴建立如图所示的空间直角坐标系,易得:D(0,0,0),B(1,0,0),C(0,3,0),A(0,0,),E(,,0),所以,,∴所以与夹角的余弦值是.19.已知p:方程x2+mx+1=0有两个不等的实根;q:方程4x2+4(m﹣2)x+1=0无实根.若“p”为假命题,“q”为真命题,求实数m的取值范围. 参考答案:【考点】命题的真假判断与应用. 【专题】计算题;转化思想;综合法;简易逻辑. 【分析】求出命题p:m>2,命题q:1<m<3,再由“p”为假命题,“q”为真命题,能求出m的取值范围. 【解答】解:∵p:方程x2+mx+1=0有两个不相等的负实根, ∴,∴m>2, 又∵q:方程4x2+4(m﹣2)x+1=0无实根, ∴△=4(m﹣2)2﹣4×4<0, ∴1<m<3, ∵“p”为假命题,“q”为真命题, ∴,∴1<m≤2. ∴m的取值范围是(1,2]. 【点评】本题考查命题真假的判断,是中档题,解题时要认真审题,注意根的判别式及不等式性质的合理运用. 20.已知函数f(x)=alnx+x2+1.(Ⅰ)当a=﹣时,求f(x)在区间[,e]上的最值;(Ⅱ)讨论函数f(x)的单调性;(Ⅲ)当﹣1<a<0时,有f(x)>1+ln(﹣a)恒成立,求a的取值范围.参考答案:【考点】导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求导f(x)的定义域,求导函数,利用函数的最值在极值处与端点处取得,即可求得f(x)在区间[,e]上的最值;(Ⅱ)求导函数,分类讨论,利用导数的正负,可确定函数的单调性;(Ⅲ)由(Ⅱ)知,当﹣1<a<0时,f(x)min=f(),即原不等式等价于f()>1+ln(﹣a),由此可求a的取值范围.【解答】解:(Ⅰ)当a=﹣时,,∴.∵f(x)的定义域为(0,+∞),∴由f′(x)=0得x=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣∴f(x)在区间[,e]上的最值只可能在f(1),f(),f(e)取到,而f(1)=,f()=,f(e)=,∴f(x)max=f(e)=,f(x)min=f(1)=.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ),x∈(0,+∞).①当a+1≤0,即a≤﹣1时,f′(x)<0,∴f(x)在(0,+∞)上单调递减;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣②当a≥0时,f′(x)>0,∴f(x)在(0,+∞)上单调递增;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣③当﹣1<a<0时,由f′(x)>0得,∴或(舍去)∴f(x)在(,+∞)单调递增,在(0,)上单调递减;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣综上,当a≥0时,f(x)在(0,+∞)上单调递增;当﹣1<a<0时,f(x)在(,+∞)单调递增,在(0,)上单调递减;当a≤﹣1时,f(x)在(0,+∞)上单调递减;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)由(Ⅱ)知,当﹣1<a<0时,f(x)min=f()即原不等式等价于f()>1+ln(﹣a)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣即aln+﹣+1>1+ln(﹣a)整理得ln(a+1)>﹣1∴a>﹣1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣又∵﹣1<a<0,∴a的取值范围为(﹣1,0).﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣21.基于移动网络技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,给人们带来新的出行体验,某共享单车运营公司的市场研究人员为了了解公司的经营状况,对公司最近6个月的市场占有率y%进行了统计,结果如下表:月份2018.112018.122019.012019.022019.032019.04月份代码123456111316152021

(1)请用相关系数说明能否用线性回归模型拟合y与月份代码x之间的关系.如果能,请计算出y关于x的线性回归方程,如果不能,请说明理由;(2)根据调研数据,公司决定再采购一批单车扩大市场,从成本1000元/辆的A型车和800元/辆的B型车中选购一种,两款单车使用寿命频数如下表:报废年限车型1年2年3年4年总计A10304020100/p>

经测算,平均每辆单车每年能为公司带来500元的收入,不考虑除采购成本以外的其它成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,以平均每辆单车所产生的利润的估计值为决策依据,如果你是公司负责人,会选择哪款车型?参考数据:,,,.参考公式:相关系数,,.参考答案:(1)见解析;(2)采购款车型.【分析】(1)由表格中数据,利用公式,求得的值,即可得到回归直线的方程;(2)分别求得100辆款和款单车平均每辆的利润,即可作出估计,得到答案。【详解】(1)由表格中数据可得,,.∵.∴与月份代码之间具有较强的相关关系,故可用线性回归模型拟合两变量之间的关系.,∴,∴关于的线性回归方程为.(2)这100辆款单车平均每辆的利润为(元),这100辆款单车平均每辆的利润为(元)。∴用频率估计概率,款单车与款单车平均每辆的利润估计值分别为350元、400元,应采购款车型.【点睛】本题主要考查了回归直线方程的求解及应用,其中解答中根据表格中的数据,利用公式,准确计算的值是解答的关键,着重考查了运算与求解能力,属于中档试题。22.函数y=Asin(ωx+?)(A>0,ω>0)在x∈(0,7π)内取到一个最大值和一个最小值,且当x=π时,y有最大值3,当x=6π时,y有最小值﹣3.(1)求此函数解析式;(2)写出该函数的单调递增区间;(3)是否存在实数m,满足不等式Asin()>Asin()?若存在,求出m值(或范围),若不存在,请说明理由.参考答案:【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式;H4:正弦函数的定义域和值域;H5:正弦函数的单调性.【分析】(1)根据题意,函数的最值可以确定A,根据在x∈(0,7π)内取到一个最大值和一个最小值,且当x=π时,y有最大值3,当x=6π时,y有最小值﹣3,可以确定函数的周期,从而求出ω的值和φ的值,从而求得函数的解析式;(2)令2kπ﹣≤x+≤2kπ+,解此不等式,即可求得函数的单调递增区间;(3)根据(1)所求得的ω和φ的值,分析和的范围,确定函数在该区间上的单调性,即可求得结果.【解答】解:(1)∵当x=π时,y有最大值3,当x=6π时,y有最小值﹣3.∴A==3,=5π,∴T=10π=,∴ω==,∵当x=π时,y有最大值3,∴π+?=,∴?=,∴y=3sin(x+),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论