2011年10月14日 八年级 一次函数巩固提高 三角形的边与角 学生用_第1页
2011年10月14日 八年级 一次函数巩固提高 三角形的边与角 学生用_第2页
2011年10月14日 八年级 一次函数巩固提高 三角形的边与角 学生用_第3页
2011年10月14日 八年级 一次函数巩固提高 三角形的边与角 学生用_第4页
2011年10月14日 八年级 一次函数巩固提高 三角形的边与角 学生用_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

博約教育趁热打铁,事半功倍博約教育课后练习年10月14日八年级一次函数巩固提高1、求下列函数的自变量的取值范围(1)y=11+2如图1所示,直线OP经过点P(4,),过x轴上的点l、3、5、7、9、11……分别作x轴的垂线,与直线OP相交得到一组梯形,其阴影部分梯形的面积从左至右依次记为S1、S2、S3……Sn则Sn关于n的函数关系式是____01301357911S1S2S3图1xyp3(2011山东威海,18,3分)如图,直线轴于点,直线轴于点,直线轴于点,…直线轴于点.函数的图象与直线,,,…分别交于点,,,…;函数的图象与直线,,,…分别交于点,,,….如果的面积记作,四边形的面积记作,四边形的面积记作,…四边形的面积记作,那么.4(2011浙江温州,24,14分)如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(-4,0),点B的坐标为(0,b)(b>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为P'(点P'不在y轴上),连结PP',P'A,P'C.设点P的横坐标为a.(1)当b=3时,①求直线AB的解析式;②若点P'的坐标是(-1,m),求m的值;(2)若点P在第一象限,记直线AB与P'C的交点为D.当P'D:DC=1:3时,求a的值;(3)是否同时存在a,b,使△P'CA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由.5(2011江苏盐城,28,12分)如图,已知一次函数y=-x+7与正比例函数y=EQ\F(4,3)x的图象交于点A,且与x轴交于点B.求点A和点B的坐标(2)过点A作AC⊥y轴于点C,过点B作直线l∥y轴.动点P从原点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度沿x轴向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.①当t为何值时,以A、P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.(备用图)(备用图)6、(本小题满分12分)化工商店销售某种新型化工原料,其市场指导价是每千克160元(化工商店的售价还可以在市场指导价的基础上进行浮动),这种原料的进货价是市场指导价的75%.(1)为了扩大销售量,化工商店决定适当调整价格,调整后的价格按八折销售,仍可获得实际售价的20%的利润.求化工商店调整价格后的标价是多少元?打折后的实际售价是多少元?(2)化工商店为了解这种原料的月销售量y(千克)与实际售价x(元/千克)之间的关系,每个月调整一次实际售价,试销一段时间后,部门负责人把试销情况列成下表:实际售价x(元/千克)…150160168180…月销售量y(千克)…500480464440…①请你在所给的平面直角坐标系中,以实际售价x(元/千克)为横坐标,月销售量y(千克)为纵坐标描出各点,观察这些点的发展趋势,猜想y与x之间可能存在怎样的函数关系;②请你用所学过的函数知识确定一个满足这些数据的y与x之间的函数表达式,并验证你在①中的猜想;③若化工商店某月按同一实际售价共卖出这种原料450千克,请你求出化工商店这个月销售这种原料的利润是多少元?第24第24题三角形的边与角三角形是最基本的图形之一,是研究其他复杂图形的基础,三角形的三边相互制约,三个内角之和为定值,边与角之间有密切的联系(如大角对大边、大边对大角等),反映三角形的边与角关联的基本知识有:三角形三边关系定理及推论、三角形内角和定理及推论等,它们在线段。角度的计算、图形的计数等方面有广泛的应用.解与三角形的边与角有关的问题时,往往要用到数形结合及分类讨论法,即用代数方法(方程、不等式)解几何计算题及简单的证明题,按边或角对三角形进行分类.熟悉以下基本图形、并证明基本结论:(1)∠l+∠2=∠3+∠4;(2)若BD、CO分别为∠ABC、∠ACB的平分线,则∠BOC=90°+∠A;若BO、CO分别为∠DBC、∠ECB的平分线,则∠BOC=90°-∠A;若BE、CE分别为∠ABC、∠ACD的平分线,则∠E=∠A.注:中线、角平分线、高是三角形中的重要线段,它们的差别在于高随着三角形形状的不同,可能在三角内部、边上或外部.代数法解几何计算问题的基本思路是通过设元,运用几何知识建立方程(组)、不等式(组),将问题转化为解方程(组)或解不等式(组).例题求解【例1】在△ABC中,三个内角的度数均为整数,且∠A<∠B<∠C,4∠C=7∠A,则∠B的度数为思路点拨设∠C=x°,根据题设条件及三角形内角和定理把∠A、∠B用x的代数式表示,建立关于x的不等式组.【例2】以1995的质因数为边长的三角形共有()A.4个B.7个C.13个D.60个思路点拨1995=3×5×7×19,为做到计数的准确,可将三角形按边分类,注意三角形三边应满足的关系制约.【例3】(1)如图,BE是∠ABD的平分线.CF是∠ACD的平分线,BE与CF交于G,若∠BDC=140°,∠BGC=110°,求∠A的大小.(“希望杯”邀请赛试题)(2)在△ABC中,∠A=50°,高BE、CF交于O,且O不与B、C重合,求∠BOC的度数.(“东方航空杯”——上海市竞赛题)思路点拨(1)运用凹边形的性质计算.(2)由O不与B、C重合知,∠B、∠C均非直角,这样,△ABC既可能是锐角三角形又可能是钝角三角形,故应分两种情况讨论.【例4】周长为30,各边长互不相等且都是整数的三角形共有多少个?(2003年河南省竞赛题)思路点拨不妨设三角形三边为a、b、c,且a<b<c,由三角形三边关系定理及题设条件可确定c的取值范围,以此作为解题的突破口.注如图,在凹四边ABCD中,∠BDC=∠A+∠B+∠C.请读者证明.解所研究的问题的图形形状不惟一或几何固形位置关系不确定或与分类概念相关的命题时.往往用到分类讨论法.【例5】(1)用长度相等的100根火柴杆,摆放成一个三角形,使最大边的长度是最小边长度的3倍,求满足此条件的每个三角形的各边所用火柴杆的根数.(大原市竞赛题)(2)现有长为150cm的铁丝,要截成n(n>2)小段,每段的长为不小于l㎝的整数.如果其中任意3小段都不能拼成三角形,试求n的最大值,此时有几种方法将该铁丝截成满足条件的n段.(第17届江苏省竞赛题)思路点拨(1)设三角形各边需用火柴杆数目分别为x、y、3x,综合运用题设条件及三角形边的关系等知识,建立含等式、不等式的混合组,这是解本例的突破口.(2)因n段之和为定值150㎝,故欲n尽可能的大,必须每段的长度尽可能小,这样依题意可构造一个数列.学力训练1.若三角形的三个外角的比是2:3:4,则这个三角形的最大内角的度数是.2.一条线段的长为a,若要使3a—l,4a+1,12-a这三条线段组成一个三角形,则a的取值范围是.3.如图,在△ABC中,两条角平分线CD、BE相交于点F,∠A=60°,则∠DFE=度.4.如图,DC平分∠ADB,EC平分∠AEB,若∠DAE=α,∠DBE=β,则∠DCE=.(用α、β表示).5.若a、b、c为三角形的三边,则下列关系式中正确的是()A.B.C.D.6.△ABC的内角A、B、C满足3A>5B,3C≤2B,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定7.如图,△ABC内有三个点D、E、F,分别以A、B、C、D、E、F这六个点为顶点画三角形,如果每个三角形的顶点都不在另一个三角形的内部,那么,这些三角形的所有内角之和为()A.360°B.900°C.1260°D.1440°8.如图,在Rt△ABC中,∠C=90°,∠A=30°,∠C的平分线与∠B的外角平分线交于E点,连结AE,则∠AEB是()A.50°B.45°C.40°D.35°9.如图,已知∠3=∠1+∠2,求证:∠A+∠B+∠C+∠D=180°.10.如图,已知射线ox与射线oy互相垂直,B,A分别为ox、oy上一动点,∠ABx、∠BAy的平分线交于C.问:B、A在ox、oy上运动过程中,∠C的度数是否改变?若不改变,求出其值;若改变,说明理由.11.已知三角形的三条边长均为整数,其中有一条边长是4,但它不是最短边,这样的三角形共有个.12.三角形的三个内角分别为α、β、γ,且α≥β≥γ,α=2γ,则β的取值范围.13.已知△ABC的周长是12,三边为a、b、c,若b是最大边,则b的取值范围是.14.如图,E和D分别在△ABC的边BA和CA的延长线上,CF、EF分别平分∠ACB和∠AED,若∠B=70°,∠D=40°,则∠F的大小是.15.已知△ABC中,∠B=60°,∠C>∠A,且(∠C)2=(∠A)2+(∠B)2,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定16.不等边三角形中,如果有一条边长等于另外两条边长的平均值,那么,最大边上的高与最小边上的高的比值的取值范围是()A.B.C.1<k<2D.17.已知三角形的三边的长a、b、c都是整数,且a≤b<c,若b=7,则这样的三角形有()A.14个B.28个C.21个D.49个18.如果三角形的一个外角大于这个三角形的某两个内角的2倍,那么这个三角形一定是()A.锐角三角形B.钝角三角形C.直角三角形D.直角或钝角三角形19.如图,已知DM平分∠ADC,BM平分∠ABC,且∠A=27°,∠M=33°,求∠C的度数.20.不等边△ABC的两条高长度分别为4和12,若第三条高的长也是整数,试求它的长.21.将长度为2n(n为自然数,且n≥4)的一根铅丝折成各边的长均为整数的三角形,记(a,b,c)为三边的长,且满足a≤b≤c的一个三角形.(1)就n=4,5,6的情况,分别写出所有满足题意的(a,b,c);(2)有人根据(1)中的结论,便猜想:当铅丝的长度为2n(n为自然数且n≥4)时,对应(a,b,c)的个数一定是n-3,事实上,这是一个不正确的猜想,请写出n=12时的所有(a,b,c),并回答(a,b,c)的个数;(3)试将n=12时所有满足题意的(a,b,c),按照至少两种不同的标准进行分类.22.阅读以下材料并填空.平面上有n个点(n≥2),且任意三个点不在同一条直线上,过这些点作直线,一共能作出多少条不同的直线?(1)分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;有5个点时,可连成l0条直线……(2)归纳:考察点的个数n和可连成直线的条数S发现:(1)分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3.条直线;当有4个点时,可连成6条直线;当有5个点时,可连成1O条直线;(2)归纳:考察点的个数n和可连成直线的条数Sn,发现:点的个数可连成直线条数21=S2=33=S3=46=S4=510=S5=…………n(3)推理:平面上有n个点,两点确定一条直线.取第一个点以有n种取法,取第二个点B有(n-1)种取法,所以一共可连成n(n-1)条直线,但AB与BA是同一条直线,故应除以2,即Sn=.(4)结论:Sn=.试探究以下问题:平面上有n(n≥3)个点,任意三个点不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论