版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省温州市鳌江镇第八高中高二数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.是在上的奇函数,当时,,则当时=(
)A
B
C
D
参考答案:D2.如图所示,液体从一圆锥形漏斗漏入一圆柱形桶中,开始时,漏斗盛满液体,经过3分钟漏完.已知圆柱中液面上升的速度是一个常量,H是圆锥形漏斗中液面下落的距离,则H与下落时间t(分)的函数关系表示的图象只可能是()
A.B.C.D.参考答案:A3.下列命题中,正确的是()A.sin(+α)=cosα B.常数数列一定是等比数列C.若0<a<,则ab<1 D.x+≥2参考答案:C【考点】命题的真假判断与应用.【分析】A,sin(+α)=﹣cosα,;B,数列0,0,0,…是常数数列,但不是等比数列;C,在0<a<的两边同时乘以正数b,得到ab<1;对于D,当x<0时,不满足x+≥2.【解答】解:对于A,sin(+α)=﹣cosα,故错;对于B,数列0,0,0,…是常数数列,但不是等比数列,故错;对于C,在0<a<的两边同时乘以正数b,得到ab<1,故正确;对于D,当x<0时,不满足x+≥2,故错.故选:C.4.在中,若,则自然数n的值是A.7
B.8 C.9
D.10参考答案:B略5.在中,角所对的边长分别为,若,,则(
)A.
B.C.
D.与的大小关系不能确定参考答案:C6.如图,在正方体中,是底面的中心,为的中点,异面直线与所成角的余弦值等于
(
)
A.
B.
C.
D.
参考答案:B略7.已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则p的值为(
).A.
B.1C.2
(D.4参考答案:C8.过点引直线与曲线相交于两点,为坐标原点,当的面积取最大值时,直线的斜率等于
参考答案:B略9.设经过定点的直线与抛物线相交于两点,若
为常数,则的值为(
)A.
B。
C。
D。参考答案:A10.在中,(
)A.可以确定为正数
B、可以确定为负数
C、可以确定为0
D、无法确定参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.在空间直角坐标系O﹣xyz中,有两点P(1,﹣2,3),M(2,0,4)则两点之间的距离为
.参考答案:【考点】空间两点间的距离公式.【分析】由空间两点间距离公式,直接求解即可得出结论.【解答】解:∵P(1,﹣2,3),M(2,0,4),∴|PM|==.故答案为12.如图所示,向量在由单位长度为1的正方形组成的网格中则
▲
.参考答案:313.设z=x+y,其中x,y满足,若z的最大值为12,则z的最小值为.参考答案:﹣6【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,先求出最优解,利用数形结合即可得到结论.【解答】解:作出不等式组对应的平面区域如图:由z=x+y得y=﹣x+z,则直线截距最大时,z也最大.平移直线y=﹣x+z由图象可知当直线y=﹣x+z经过点B时,直线y=﹣x+z的截距最大,此时z最大为12,即x+y=12,由,得,即B(6,6),此时B也在直线y=k上,∴k=6,当直线y=﹣x+z经过点A时,直线y=﹣x+z的截距最小,此时z最小,由,即,即A(﹣12,6),此时z=x+y=﹣12+6=﹣6,故答案为:﹣614.设a=,b=-,c=-,则a,b,c的大小关系为________.参考答案:a>c>b略15.设数列{an}的前n的和为Sn,且满足
▲
.参考答案:4【分析】由,得,从而,从而,由此得到是首项为2,公比为2的等比数列,从而能求出的值.【详解】数列的前项和为,满足,,解得,,解得,,解得,,整理,得,是首项为2,公比为2的等比数列,,故答案为4.【点睛】本题主要考查数列的通项公式与前项和公式之间的关系,属于中档题.已知数列前项和与第项关系,求数列通项公式,常用公式,将所给条件化为关于前项和的递推关系或是关于第项的递推关系,若满足等比数列或等差数列定义,用等比数列或等差数列通项公式求出数列的通项公式,否则适当变形构造等比或等数列求通项公式.在利用与通项的关系求的过程中,一定要注意的情况.
16.已知函数f(x)=Asin(ωx+φ)(ω>0)的部分图象如图所示,则f(0)=_________.参考答案:17.已知0<k<4,直线l1:kx﹣2y﹣2k+8=0和直线l:2x+k2y﹣4k2﹣4=0与两坐标轴围成一个四边形,则使得这个四边形面积最小的k值为.参考答案:【考点】过两条直线交点的直线系方程;方程组解的个数与两直线的位置关系.【分析】先求出两直线经过的定点坐标,再求出直线与x轴的交点,与y轴的交点,得到所求的四边形,利用四边形的面积等于三角形ABD的面积和梯形OCBD的面积之和,再应用二次函数的性质求出面积最小时的k值.【解答】解:如图所示:直线l1:kx﹣2y﹣2k+8=0即k(x﹣2)﹣2y+8=0,过定点B(2,4),与y轴的交点C(0,4﹣k),直线l:2x+k2y﹣4k2﹣4=0,即
2x﹣4+k2(y﹣4)=0,过定点(2,4),与x轴的交点A(2k2+2,0),由题意知,四边形的面积等于三角形ABD的面积和梯形OCBD的面积之和,故所求四边形的面积为×4×(2k2+2﹣2)+=4k2﹣k+8,∴k=时,所求四边形的面积最小,故答案为.【点评】本题考查直线过定点问题,二次函数的性质得应用,体现了转化及数形结合的数学思想.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在直角坐标系中,为坐标原点,如果一个椭圆经过点,且以点F(2,0)为它的一个焦点.(1)求此椭圆的标准方程;(2)在(1)中求过点F(2,0)的弦AB的中点M的轨迹方程.参考答案:略19.已知线段AB的端点B的坐标是,端点A在圆上运动,(1)求线段AB中点M的轨迹方程;(2)点C,若过点C且在两坐标轴上截距相等的直线与圆相切,求a的值及切线方程。参考答案:(1)设A(m,n),M(x,y),∵M为线段AB中点∴
,又点A在圆上运动∴即∴点M的轨迹方程为:;
………6分(2)设切线方程为:和
………9分则和,解得:或
………11分∴切线方程为和.
………13分20.已知圆C经过,两点,且圆心C在直线上.(1)求圆C的方程;(2)动直线l:过定点M,斜率为1的直线m过点M,直线m和圆C相交于P,Q两点,求PQ的长度.参考答案:解:(1)设圆C的方程为,则,解得,,,∴圆C的方程:;(2)动直线的方程为.则得,∴动直线l过定点,∴直线m:,∴圆心到m的距离为,∴PQ的长为.
21.已知A(3,0),B(0,3),C(cosα,sinα).(1)若·=-1,求sin的值;(2)]O为坐标原点,若=,且α∈(0,π),求与的夹角.参考答案:(1)=(cosα-3,sinα),=(cosα,sinα-3),=(cosα-3)·cosα+sinα(sinα-3)=-1,得sin2α+cos2α-3(sinα+cosα)=-1,所以sin=.(2)因为=,所以(3-cosα)2+sin2α=13,所以cosα=-,因为α∈(0,π),所以α=,sinα=,所以C,所以=,设与的夹角为θ,则==,因为θ∈(0,π),所以θ=为所求.22.(本题满分10分,第1问4分,第2问6分)已知数列的前项和
(1)求的最大值;(2)若
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 影视剧务管理师助理场记聘用合同
- 2024年度艺人经纪服务协议2篇
- 《审计学》全套课件
- 人教版九年级化学第八单元3拓展一三种金属活动性顺序的验证金属与酸反应的图像分析分层作业课件
- 二零二四年度工程安装项目信息安全与保密协议3篇
- 二零二四年度分包方工程勘察设计合同的履行与管理合同3篇
- 员工培训研究现状调查
- 七下英语六单元教育课件
- 钢管采购合同范本简易版
- 2024年度工程款支付连带责任担保合同15篇
- 二级公立医院绩效考核三级手术目录(2020版)
- 研发部组织架构图
- 设备采购 投标方案(技术方案)
- 机关库存物资管理制度
- 品牌授权工厂生产授权书合同
- 小学各年级培养团结合作意识共同成长主题班会
- “双减”与“五项管理”(课件)主题班会
- 起亚福瑞迪发动机维修手册
- 23秋国家开放大学《广告设计》形考任务1-4参考答案
- 被动语态课件人教版英语九年级全册
- 大学生职业生涯规划与就业创业指导智慧树知到课后章节答案2023年下四川水利职业技术学院
评论
0/150
提交评论