版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年安徽省合肥市肥东县古城中学高三数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知向量=(m,2),向量=(2,﹣3),若|+|=|﹣|,则实数m的值是()A.﹣2 B.3 C. D.﹣3参考答案:B【考点】平面向量数量积的运算.【专题】计算题;平面向量及应用.【分析】将等式两边平方,运用向量的平方即为模的平方,结合向量的数量积的坐标表示,解m的方程,即可得到.【解答】解:若|+|=|﹣|,则(+)2=(﹣)2,即+2=﹣2,即=0,由向量=(m,2),向量=(2,﹣3),则2m﹣6=0,解得m=3.故选:B.【点评】本题考查向量的数量积的坐标表示和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题.2.如图,矩形的长,宽,若平面,矩形的边上至少有一个点,使得,则的范围是(
)A.
B.
C.
D.
参考答案:A略3.已知的导函数,在区间,且偶函数满足,则x的取值范围是(
)
A.
B.
C.
D.参考答案:A4.已知实数x,y满足,则z=2x+y的最大值为(
) A.﹣2 B.﹣1 C.0 D.4参考答案:D考点:简单线性规划.专题:不等式的解法及应用.分析:先画出满足条件的平面区域,将z=2x+y转化为:y=﹣2x+z,由图象得:y=﹣2x+z过(1,2)时,z最大,代入求出即可.解答: 解:画出满足条件的平面区域,如图示:,将z=2x+y转化为:y=﹣2x+z,由图象得:y=﹣2x+z过(1,2)时,z最大,Z最大值=4,故选:D.点评:本题考查了简单的线性规划问题,考查了数形结合思想,是一道基础题.5.已知复数z=l+i,则等于
A.2i
B.—2i
C.2
D.-2参考答案:A6.已知命题:抛物线的准线方程为;命题:若函数为偶函数,则关于对称.则下列命题是真命题的是
A.
B.
C.
D.参考答案:D略7.在复平面内,复数的对应点位于(A)第一象限
(B)第二象限
(C)第三象限
(D)第四象限参考答案:D略8.已知曲线向左平移个单位,得到的曲线经过点,则(
)A.函数的最小正周期 B.函数在上单调递增C.曲线关于直线对称 D.曲线关于点对称参考答案:D解法1:由题意,得,且,即,所以,即,故,故的最小正周期,故选项A错;因为的单调递减区间为,故选项B错;曲线的对称轴方程为,故选项C错;因为,所以选项D正确,故选D.解法2:由于曲线向左平移个单位,得到的曲线特征保持不变,周期,故的最小正周期,故选项A错;由其图象特征,易知的单调递减区间为,故选项B错;曲线的对称轴方程为,故选项C错;因为,所以选项D正确,故选D.9.复数化简的结果为
A.
B.
C.
D.参考答案:A,选A.10.计算(A)
(B)
(C)
(D)参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.函数的定义域为___________.参考答案:(0,1考点:函数的定义域与值域试题解析:要使函数有意义,需满足:解得:故函数的定义域为(0,1故答案为:(0,112.某单位有职工52人,现将所有职工按l、2、3、…、52随机编号,若采用系统抽样的方法抽取一个容量为4的样本,已知6号、32号、45号职工在样本中,则样本中还有一个职工的编号是___________.参考答案:19略13.右图是一个空间几何体的三视图,如果主视图和左视图都是边长为2的正三角形,俯视图为正方形,那么该几何体的体积为________________.参考答案:略14.已知0<θ<,由不等式tanθ+≥2,tanθ+=++≥3,tanθ+=+++≥4,…,启发我们得到推广结论:tanθ+≥n+1,则a=_________.参考答案:nn略15.如下图,函数,x∈R,(其中0≤≤)的图像与y轴交于点(0,1).设P是图像上的最高点,M、N是图像与x轴的交点,则与的夹角的余弦值为
.参考答案:略16.(1﹣2x)6的展开式中,x3项的系数为.(用数字作答)参考答案:﹣160【考点】二项式系数的性质.【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为3求出展开式中x3的系数即可.【解答】解:设求的项为Tr+1=C6r(﹣2x)r令r=3,∴T4=﹣C6323x3=﹣160x3.故答案为:﹣160.17.若(1+2x)n展开式中含x3项的系数等于含x项系数的8倍,则正整数n=.参考答案:5考点:二项式定理的应用.专题:计算题.分析:由题意可得Tr+1=Cnr(2x)r=2rCnrxr分别令r=3,r=1可得含x3,x项的系数,从而可求解答:解:由题意可得二项展开式的通项,Tr+1=Cnr(2x)r=2rCnrxr令r=3可得含x3项的系数为:8Cn3,令r=1可得含x项的系数为2Cn1∴8Cn3=8×2Cn1∴n=5故答案为:5点评:本题主要考查了利用二项展开式的通项公式求解指定的项,解题的关键是熟练掌握通项,属于基础试题三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分10分)计算(1)(2)参考答案:(1)100;(2)-3.试题分析:(1)根据指数函数的性质计算;(2)根据对数函数的性质计算.试题解析:(1);(2).考点:指数与对数的运算.19.已知函数f(x)=在点(1,f(1))处的切线方程为x+y=2.(Ⅰ)求a,b的值;(Ⅱ)对函数f(x)定义域内的任一个实数x,f(x)<恒成立,求实数m的取值范围.参考答案:考点:利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.专题:综合题;圆锥曲线中的最值与范围问题.分析:(I)求导函数,利用函数在点(1,f(1))处的切线方程为x+y=2,建立方程组,即可求a,b的值;(II)对函数f(x)定义域内的任一个实数x,恒成立,等价于恒成立,求出函数的最值,即可求实数m的取值范围.解答: 解:(Ⅰ)∵,∴∵点(1,f(1))在直线x+y=2上,∴f(1)=1,∵直线x+y=2的斜率为﹣1,∴f′(1)=﹣1∴有,∴(Ⅱ)由(Ⅰ)得由及x>0,可得令,∴,令h(x)=1﹣x﹣lnx,∴,故h(x)在区间(0,+∞)上是减函数,故当0<x<1时,h(x)>h(1)=0,当x>1时,h(x)<h(1)=0从而当0<x<1时,g′(x)>0,当x>1时,g′(x)<0∴g(x)在(0,1)是增函数,在(1,+∞)是减函数,故g(x)max=g(1)=1要使成立,只需m>1故m的取值范围是(1,+∞).点评:本题考查导数知识的运用,考查导数的几何意义,考查恒成立问题,考查学生分析解决问题的能力,属于中档题.20.在平面直角坐标系中,已知圆C1的方程为,圆C2的方程为,动圆C与圆C1内切且与圆C2外切.(1)求动圆圆心C的轨迹E的方程;(2)已知与为平面内的两个定点,过(1,0)点的直线l与轨迹E交于A,B两点,求四边形APBQ面积的最大值.参考答案:(1)设动圆的半径为,由题意知从而有,故轨迹为以为焦点,长轴长为4的椭圆,并去 除点,从而轨迹的方程为.(2)设的方程为,联立,消去得,设点,有则,点到直线的距离为,点到直线的距离为,从而四边形的面积令,有,函数在上单调递增,有,故,即四边形面积的最大值为.21.如图,在几何体中,四边形ABCD为菱形,对角线AC与BD的交点为O,四边形DCEF为梯形,EF∥DC,FD=FB.(Ⅰ)若DC=2EF,求证:OE∥平面ADF;(Ⅱ)求证:平面AFC⊥平面ABCD;(Ⅲ)若AB=FB=2,AF=3,∠BCD=60°,求AF与平面ABCD所成角.参考答案:【考点】直线与平面所成的角;直线与平面平行的判定;平面与平面垂直的判定.【分析】(Ⅰ)取AD的中点G,连接OG,FG,证明OGFE为平行四边形,可得OE∥FG,即可证明:OE∥平面ADF;(Ⅱ)证明BD⊥平面AFC,即可证明:平面AFC⊥平面ABCD;(Ⅲ)做FH⊥AC于H,∠FAH为AF与平面ABCD所成角,即可求AF与平面ABCD所成角.【解答】(Ⅰ)证明:取AD的中点G,连接OG,FG.∵对角线AC与BD的交点为O,∴OG∥DC,OG=,∵EF∥DC,DC=2EF,∴OG∥EF,OG=EF,∴OGFE为平行四边形,∴OE∥FG,∵FG?平面ADF,OE?平面ADF,∴OE∥平面ADF;(Ⅱ)证明:∵四边形ABCD为菱形,∴OC⊥BD,∵FD=FB,O是BD的中点,∴OF⊥BD,∵OF∩OC=O,∴BD⊥平面AFC,∵?P?平面ABCD,∴平面AFC⊥平面ABCD;(Ⅲ)解:作FH⊥AC于H.∵平面AFC⊥平面ABCD,∴FH⊥平面ABCD,∴∠FAH为AF与平面ABC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 图书购销合同书模板(2025年)
- 2025买卖二手挖掘机合同
- 实习生保密协议范本2025年
- 企业级无线网络覆盖解决方案服务合同
- 污水处理厂安装工程施工合同样本2025年
- 小型船舶买卖合同书2025年
- 共享经济平台用户协议
- 破桩头劳务合同模板2025年
- 私人房产转让协议书2025年
- 互联网社交平台运营合作协议
- GB/T 14857-1993演播室数字电视编码参数规范
- GB/T 14125-2008机械振动与冲击振动与冲击对建筑物内敏感设备影响的测量和评价
- 中国人民大学组织行为管理学
- 高中美术-美术鉴赏《人间生活》
- 核电质量保证-质量体系培训课件
- 脑电图(图谱)课件
- 浙江标准农贸市场建设与管理规范
- 快速诱导插管指南课件
- 托盘演示教学课件
- 中华农耕文化及现实意义
- 农产品品牌与营销课件
评论
0/150
提交评论