2021-2022学年河南省郑州市实验高级中学高二数学文期末试题含解析_第1页
2021-2022学年河南省郑州市实验高级中学高二数学文期末试题含解析_第2页
2021-2022学年河南省郑州市实验高级中学高二数学文期末试题含解析_第3页
2021-2022学年河南省郑州市实验高级中学高二数学文期末试题含解析_第4页
2021-2022学年河南省郑州市实验高级中学高二数学文期末试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022学年河南省郑州市实验高级中学高二数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设函数在定义域内可导,的图象如图所示,则导函数的图象可能是()A. B.C. D.参考答案:C【详解】试题分析:原函数的单调性是:当x<0时,增;当x>0时,单调性变化依次为增、减、增故当x<0时,f′(x)>0;当x>0时,f′(x)的符号变化依次为+、-、+.考点:利用导数判断函数的单调性.2.已知圆C经过两点,圆心在x轴上,则圆C的方程是A. B.C. D.参考答案:A3.已知点A(3,-1),B(-5,-13),若直线AB与直线l:ax-2y+2=0平行,则点A到直线l的距离为(

)A.

B.

C.

D.参考答案:C4.过点P(0,1)与抛物线y2=x有且只有一个交点的直线有()A.4条 B.3条 C.2条 D.1条参考答案:B【考点】KG:直线与圆锥曲线的关系.【分析】过点P(0,1)的直线与抛物线y2=x只有一个交点,则方程组只有一解,分两种情况讨论即可:(1)当该直线存在斜率时;(2)该直线不存在斜率时;【解答】解:(1)当过点P(0,1)的直线存在斜率时,设其方程为:y=kx+1,由,消y得k2x2+(2k﹣1)x+1=0,①若k=0,方程为﹣x+1=0,解得x=1,此时直线与抛物线只有一个交点(1,1);②若k≠0,令△=(2k﹣1)2﹣4k2=0,解得k=,此时直线与抛物线相切,只有一个交点;(2)当过点P(0,1)的直线不存在斜率时,该直线方程为x=0,与抛物线相切只有一个交点;综上,过点P(0,1)与抛物线y2=x有且只有一个交点的直线有3条.故选B.5.直线被椭圆所截得的弦的中点坐标是(

A.(,-)

B.(-,)

C.(,-)

D.(-,

)参考答案:B略6.△ABC内角A、B、C的对边分别为,b,c,已知=bcosC+csinB.则B=

A

300

B

450

C

600

D

1200参考答案:B略7.已知命题:函数在内单调递减;:曲线与轴没有交点.如果“或”是真命题,“且”是假命题,则实数的取值范围是(

)A.

B.

C.

D.参考答案:A8.观察等式:,……,由此得出以下推广命题不正确的是(

)A.

B.C.

D.参考答案:A略9.下面给出了四个类比推理:(1)由“若a,b,c∈R则(ab)c=a(bc)”类比推出“若a,b,c为三个向量则(?)?=?(?)”;(2)“a,b为实数,若a2+b2=0则a=b=0”类比推出“z1,z2为复数,若”;(3)“在平面内,三角形的两边之和大于第三边”类比推出“在空间中,四面体的任意三个面的面积之和大于第四个面的面积”;(4)“在平面内,过不在同一条直线上的三个点有且只有一个圆”类比推出“在空间中,过不在同一个平面上的四个点有且只有一个球”.上述四个推理中,结论正确的个数有()A.1个 B.2个 C.3个 D.4个参考答案:B【考点】F3:类比推理.【分析】逐个验证:(1)向量要考虑方向.(2)数集有些性质以传递的,但有些性质不能传递,因此,要判断类比的结果是否正确,关键是要在新的数集里进行论证,当然要想证明一个结论是错误的,也可直接举一个反例,(3,4)由平面图形中线的性质类比推理出空间中面的性质,由圆的性质类比推理到球的性质.【解答】(1)由向量的运算可知为与向量共线的向量,而由向量的运算可知与向量共线的向量,方向不同,故错误.(2)在复数集C中,若z1,z2∈C,z12+z22=0,则可能z1=1且z2=i.故错误;(3)平面中的三角形与空间中的三棱锥是类比对象;故正确.(4)由圆的性质类比推理到球的性质由已知“平面内不共线的3个点确定一个圆”,我们可类比推理出空间不共面4个点确定一个球,故正确故选:B.10.“”是“”的(

)A.充分不必要条件

B.必要不充分条件C.充分必要条件

D.既不充分也不必要条件参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.若椭圆上一点P到焦点F1的距离为7,则点P到F2相对应的准线的距离是____;参考答案:5由椭圆的定义知,|PF1|=7,故|PF2|=3。12.已知,,则的最大值是

参考答案:

13.已知点p(x,y)在椭圆上,则的最大值为

参考答案:814.若的终边所在直线经过点,则__▲

_.参考答案:【知识点】三角函数定义【答案解析】解析:解:由已知得直线经过二、四象限,若的终边在第二象限,因为点P到原点的距离为1,则,若的终边在第四象限,则的终边经过点P关于原点的对称点,所以,综上可知sinα=.【思路点拨】一般已知角的终边位置求角的三角函数值通常利用三角函数的定义求值,本题应注意所求角终边所在的象限有两个.15.已知函数在时有极值0,则=

参考答案:=2,9略16.已知函数,若f(a)+f(1)=0,则实数a的值等于_______.参考答案:-3略17.(5分)已知扇形OAB,点P为弧AB上异于A,B的任意一点,当P为弧AB的中点时,S△OAP+S△OBP的值最大.现有半径为R的半圆O,在圆弧MN上依次取点(异于M,N),则的最大值为

参考答案:=,设∠MOP1=θ1,∠P1OP2=θ2,…,.则.∵0<θi<π,∴sinθi>0,猜想的最大值为.即?sinθ1+sinθ2+…+≤().下面用数学归纳法证明:(1)当n=1时,由扇形OAB,点P为弧AB上异于A,B的任意一点,当P为弧AB的中点时,S△OAP+S△OBP的值最大,可知成立.(2)假设当n=k(k∈N*)时,不等式成立,即sinθ1+sinθ2+…+≤.成立.(θ1+θ2+…+,θi>0)则当n=k+1时,左边=即sinθ1+sinθ2+…+++…+∵,当且仅当θi=θi+1时取等号.∴左边++…+==右边,当且仅当θi=θi+1(i∈N*,且1≤i≤2k+1﹣1)时取等号.即不等式对于?n∈N*都成立.故答案为.利用三角形的面积计算公式和数学归纳法即可得出.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知函数(为常数,且)的图象过点.(1)求实数的值;(2)若函数,试判断函数的奇偶性,并说明理由参考答案:解(1)把的坐标代入,得解得.(2)由(1)知,所以.此函数的定义域为R,又,所以函数为奇函数19.设平面向量.(1)若,求的值;(2)若函数,求函数f(x)的最大值,并求出相应的x值。参考答案:(1)1;(2)5【分析】(1)由,得到,再由余弦的倍角公式,即可求解。(2)根据向量的数量积的运算和三角恒等变换的公式,化简得,再根据三角函数的性质,即可求解。【详解】(1)由题意知,向量,即,即,又由。(2)因为,故当,即时,有最大值,最大值是5.【点睛】本题主要考查了向量的数量积的运算,以及三角恒等变换和三角函数的性质的应用去,其中熟记向量的数量积的运算公式和三角恒等变换的公式求得函数的解析式是解答的关键,着重考查了运算与求解能力,属于基础题。20.(1)下图将,平行四边形,直角梯形分别绕边所在的直线旋转一周,由此形成的几何体由哪些简单几何体构成.

(2)下图由哪些简单几何体构成.

参考答案:解析:(1)图,圆锥底面挖去了一个圆锥;图,圆锥加圆柱挖去一个圆锥;图,圆锥加上圆柱.

(2)明矾由2个四棱锥组成.石膏晶体由2个四棱台组成.螺杆由正六棱柱与一个圆柱组成.21.已知函数f(x)=x3﹣3x+1(Ⅰ)求f(x)的单调区间和极值;(Ⅱ)求曲线在点(0,f(0))处的切线方程.参考答案:【考点】6H:利用导数研究曲线上某点切线方程;6E:利用导数求闭区间上函数的最值.【分析】(Ⅰ)由求导公式和法则求出f′(x),求出方程f′(x)=0的根,根据二次函数的图象求出f′(x)<0、f′(x)>0的解集,由导数与函数单调性关系求出f(x)的单调区间和极值;(Ⅱ)由导数的几何意义求出f′(0):切线的斜率,由解析式求出f(0)的值,根据点斜式求出曲线在点(0,f(0))处的切线方程,再化为一般式方程.【解答】解:(Ⅰ)由题意得,f′(x)=3x2﹣3,由f′(x)=0得x=±1,当x∈(﹣1,1)时,f′(x)<0,当x∈(﹣∞,﹣1),(1,+∞)时,f′(x)>0,∴函数f(x)在(﹣1,1)上递减,在(﹣∞,﹣1),(1,+∞)上递增,当x=﹣1时取到极大值是f(﹣1)=3,当x=1取到极小值f(1)=﹣1.…(Ⅱ)由f′(x)=3x2﹣3得,f′(0)=﹣3,∵f(0)=1,∴曲线在点(0,f(0))处的切线方程是y﹣1=﹣3x即3x+y﹣1=0.…22.设函数f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的导函数.(Ⅰ)令g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+,求gn(x)的表达式;(Ⅱ)若f(x)≥ag(x)恒成立,求实数a的取值范围;(Ⅲ)设n∈N+,比较g(1)+g(2)+…+g(n)与n﹣f(n)的大小,并加以证明.参考答案:【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)由已知,,…可得用数学归纳法加以证明;(Ⅱ)由已知得到ln(1+x)≥恒成立构造函数φ(x)=ln(1+x)﹣(x≥0),利用导数求出函数的最小值即可;(Ⅲ)在(Ⅱ)中取a=1,可得,令则,n依次取1,2,3…,然后各式相加即得到不等式.【解答】解:由题设得,(Ⅰ)由已知,,…可得下面用数学归纳法证明.①当n=1时,,结论成立.②假设n=k时结论成立,即,那么n=k+1时,=即结论成立.由①②可知,结论对n∈N+成立.(Ⅱ)已知f(x)≥ag(x)恒成立,即ln(1+x)≥恒成立.设φ(x)=ln(1+x)﹣(x≥0),则φ′(x)=,当a≤1时,φ′(x)≥0(仅当x=0,a=1时取等号成立),∴φ(x)在[0,+∞)上单调递增,又φ(0)=0,∴φ(x)≥0在[0,+∞)上恒成立.∴当a≤1时,ln(1+x)≥恒成立,(仅当x=0时等号成立)当a>1时,对x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论