版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.两数1,25的等差中项为()A.1 B.13 C.5 D.2.素数指整数在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如。在不超过15的素数中,随机选取两个不同的数,其和小于18的概率是()A. B. C. D.3.有一个容量为200的样本,样本数据分组为,,,,,其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间内的频数为()A.48 B.60 C.64 D.724.在四边形中,如果,,那么四边形的形状是()A.矩形 B.正方形 C.菱形 D.直角梯形5.已知,实数、满足关系式,若对于任意给定的,当在上变化时,的最小值为,则()A. B. C. D.6.在锐角中,内角,,所对的边分别为,,,若的面积为,且,则的周长的取值范围是A. B.C. D.7.已知a,b,c满足,那么下列选项一定正确的是()A. B. C. D.8.已知1,a,b,c,5五个数成等比数列,则b的值为()A. B. C. D.39.已知,成等差数列,成等比数列,则的最小值是A.0 B.1 C.2 D.410.如右图所示,直线的斜率分别为则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在某校举行的歌手大赛中,7位评委为某同学打出的分数如茎叶图所示,去掉一个最高分和一个最低分后,所剩数据的方差为______.12.设,,,,则数列的通项公式=.13.若圆与圆的公共弦长为,则________.14.函数的最大值为.15.某中学初中部共有名老师,高中部共有名教师,其性别比例如图所示,则该校女教师的人数为__________.16.设等差数列,的前项和分别为,,若,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在直三棱柱中,,,,点N为AB中点,点M在边AB上.(1)当点M为AB中点时,求证:平面;(2)试确定点M的位置,使得平面.18.已知,是实常数.(1)当时,判断函数的奇偶性,并给出证明;(2)若是奇函数,不等式有解,求的取值范围.19.已知,,,且.(1)若,求的值;(2)设,,若的最大值为,求实数的值.20.在数列中,,,数列的前项和为,且.(1)证明:数列是等差数列.(2)若对恒成立,求的取值范围.21.假设关于某设备的使用年限x和支出的维修费y(万元)有如下表的统计资料(1)画出数据的散点图,并判断y与x是否呈线性相关关系(2)若y与x呈线性相关关系,求线性回归方程的回归系数,(3)估计使用年限为10年时,维修费用是多少?参考公式及相关数据:
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
直接利用等差中项的公式求解.【详解】由题得两数1,25的等差中项为.故选:B【点睛】本题主要考查等差中项的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.2、B【解析】
找出不超过15的素数,从其中任取2个共有多少种取法,找到取出的两个和小于18的个数,根据古典概型求解即可.【详解】不超过15的素数为,共6个,任取2个分别为,,,,,,,,,,,,,,,共15个基本事件,其中两个和小于18的共有11个基本事件,根据古典概型概率公式知.【点睛】本题主要考查了古典概型,基本事件,属于中档题.3、B【解析】
由,求出,计算出数据落在区间内的频率,即可求解.【详解】由,解得,所以数据落在区间内的频率为,所以数据落在区间内的频数,故选B.【点睛】本题主要考查了频率分布直方图,频率、频数,属于中档题.4、C【解析】试题分析:因为,所以,即四边形的对角线互相垂直,排除选项AD;又因为,所以四边形对边平行且相等,即四边形为平行四边形,但不能确定邻边垂直,所以只能确定为菱形.考点:1.向量相等的定义;2.向量的垂直;5、A【解析】
先计算出,然后利用基本不等式可得出的值.【详解】,由基本不等式得,当且仅当时,由于,即当时,等号成立,因此,,故选:A.【点睛】本题考查极限的计算,考查利用基本不等式求最值,解题的关键就是利用数列的极限计算出带的表达式,并利用基本不等式进行计算,考查运算求解能力,属于中等题.6、C【解析】
首先根据面积公式和余弦定理可将已知变形为,,然后根据正弦定理,将转化为,利用,化简为,再根据三角形是锐角三角形,得到的范围,转化为三角函数求取值范围的问题.【详解】因为的面积为,所以,所以,由余弦定理可得,则,即,所以.由正弦定理可得,所以.因为为锐角三角形,所以,所以,则,即.故的周长的取值范围是.【点睛】本题考查了正余弦定理和三角形面积公式,以及辅助角公式和三角函数求取值范围的问题,属于中档题型,本题需认真审题,当是锐角三角形时,需满足三个角都是锐角,即.7、D【解析】
c<b<a,且ac<1,可得c<1且a>1.利用不等式的基本性质即可得出.【详解】∵c<b<a,且ac<1,∴c<1且a>1,b与1的大小关系不定.∴满足bc>ac,ac<ab,故选D.【点睛】本题考查了不等式的基本性质,考查了推理能力与计算能力,属于基础题.8、A【解析】
根据等比数列奇数项也成等比数列,求解.【详解】因为1,a,b,c,5五个数成等比数列,所以也成等比数列,等比数列奇数项的符号一致,,.故选A.【点睛】本题考查了等比数列的基本性质,属于简单题型,但需注意这个隐含条件.9、D【解析】解:∵x,a,b,y成等差数列,x,c,d,y成等比数列根据等差数列和等比数列的性质可知:a+b=x+y,cd=xy,当且仅当x=y时取“=”,10、C【解析】试题分析:由图可知,,所以,故选C.考点:直线的斜率.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】
去掉分数后剩余数据为22,23,24,25,26,先计算平均值,再计算方差.【详解】去掉分数后剩余数据为22,23,24,25,26平均值为:方差为:故答案为2【点睛】本题考查了方差的计算,意在考查学生的计算能力.12、2n+1【解析】由条件得,且,所以数列是首项为4,公比为2的等比数列,则.13、【解析】将两个方程两边相减可得,即代入可得,则公共弦长为,所以,解之得,应填.14、【解析】略15、【解析】
由初中部、高中部男女比例的饼图,初中部女老师占70%,高中部女老师占40%,分别算出女老师人数,再相加.【详解】初中部女老师占70%,高中部女老师占40%,该校女教师的人数为.【点睛】考查统计中读图能力,从图中提取基本信息的基本能力.16、【解析】分析:首先根据等差数列的性质得到,利用分数的性质,将项的比值转化为和的比值,从而求得结果.详解:根据题意有,所以答案是.点睛:该题考查的是有关等差数列的性质的问题,将两个等差数列的项的比值可以转化为其和的比值,结论为,从而求得结果.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解析】
(1)推导出,由此能证明平面.(2)当点是中点时,推导出,,从而平面,进而,推导出△,从而,由此能证明平面.【详解】(1)在直三棱柱中,点为中点,为中点,,平面,平面,平面.(2)当点是中点时,使得平面.证明如下:在直三棱柱中,,,,点为中点,点是中点,,,,平面,平面,,,,,△,,,,,平面.【点睛】本题考查线面平行、线面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.18、(1)为非奇非偶函数,证明见解析;(2).【解析】
(1)当时,,计算不相等,也不互为相反数,可得出结论;(2)由奇函数的定义,求出的值,证明在上单调递减,有解,化为有解,求出的值域,即可求解.【详解】(1)为非奇非偶函数.当时,,,,因为,所以不是偶函数;又因为,所以不是奇函数,即为非奇非偶函数.(2)因为是奇函数,所以恒成立,即对恒成立,化简整理得,即.下用定义法研究的单调性;设任意,且,,所以函数在上单调递减,因为有解,且函数为奇函数,所以有解,又因为函数在上单调递减,所以有解,,的值域为,所以,即.【点睛】本题考查函数性质的综合应用,涉及到函数的奇偶性求参数,单调性证明及应用,以及求函数的值域,属于较难题.19、(1)0(2)【解析】
(1)通过可以算出,移项、两边平方即可算出结果.(2)通过向量的运算,解出,再通过最大值根的分布,求出的值.【详解】(1)通过可以算出,即故答案为0.(2),设,,,即的最大值为;①当时,(满足条件);②当时,(舍);③当时,(舍)故答案为【点睛】当式子中同时出现时,常常可以利用换元法,把用进行表示,但计算过程中也要注意自变量的取值范围;二次函数最值一定要注意对称轴是否在规定区间范围内,再讨论最后的结果.20、(1)见解析(2)【解析】
(1)根据已知可变形为常数;(2)首先求数列的通项公式,然后利用裂项相消法求,若满足对恒成立,需满足,,求的取值范围.【详解】(1)证明:因为,所以,,则.又,故数列是以1为首项,2为公差的等差数列.(2)由(1)可知,则.因为,所以,所以.易知单调递增,则.所以,且,解得.故的取值范围为.【点睛】本题考查了证明等差数列的方法,以及裂项相消法求和,本题的一个亮点是与函数结合考查数列的最值问题,涉及最值时,需先判断函数的单调性,可以根据函数特征直接判断单调性或是根据的正负判断单调性,然后求最值.21、(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度医疗机构标识导视系统合同2篇
- 2024年铬系铁合金项目资金申请报告代可行性研究报告
- 二零二四年度青少年篮球俱乐部场地租赁合同2篇
- 2023年射频同轴连接器资金申请报告
- 孕期肩痛的临床护理
- 二零二四年度商铺租赁合同书2篇
- 2023年LED室内应用灯具投资申请报告
- 二零二四年度企业信息管理系统开发合同2篇
- 2024年版泥工分包协议3篇
- 2024版特许经营合同协议书2篇
- 科学科普剧剧本小学
- 我的家乡石家庄元氏宣传介绍课件
- 超市会计核算与财务管理调查报告
- 护理职业生涯规划展示
- 新修订《中小学教师职业道德规范》解读
- Scratch程序设计基础知识考试题库(含答案)
- 2024年上海市奉贤区高三年级上册期末高考与等级考一模政治试卷含答案
- 技能比赛开幕式闭幕式及裁判工作实施方案
- 03s702型钢筋混凝土排水沟设计图集上传
- 中国社交电商行业市场现状及投资态势分析报告(智研咨询)
- 机房运维服务合同范本
评论
0/150
提交评论