




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将函数(其中)的图象向右平移个单位,若所得图象与原图象重合,则不可能等于()A.0 B. C. D.2.某小组有3名男生和2名女生,从中任选2名学生参加演讲比赛,那么下列互斥但不对立的两个事件是()A.“至少1名男生”与“全是女生”B.“至少1名男生”与“至少有1名是女生”C.“至少1名男生”与“全是男生”D.“恰好有1名男生”与“恰好2名女生”3.若变量,满足条件,则的最大值是()A.-4 B.-2 C.0 D.24.一组数据0,1,2,3,4的方差是A. B. C.2 D.45.等差数列{an}的前n项和为Sn,若S9=S4,则S13=()A.13 B.7 C.0 D.16.等比数列中,,,则公比等于()A.2 B.3 C. D.7.“”是“、、”成等比数列的()条件A.充分非必要 B.必要非充分 C.充要 D.既非充分又非必要8.若,,表示三条不重合的直线,,表示两个不同的平面,则下列命题中,正确的个数是()①若,,则②,,,则③若,,则④若,,则A.0 B.1 C.2 D.39.在中,角、、所对的边分别为、、,且,,,则的面积为()A. B. C. D.10.已知直线的倾斜角为,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,,若向量与垂直,则__________.12.已知与的夹角为,,,则________.13.已知数列的通项公式,则_______.14.已知的圆心角所对的弧长等于,则该圆的半径为______.15.如图记录了甲乙两名篮球运动员练习投篮时,进行的5组100次投篮的命中数,若这两组数据的中位数相等,平均数也相等,则______,_________.16.设为使互不重合的平面,是互不重合的直线,给出下列四个命题:①②③④若;其中正确命题的序号为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某企业用180万元购买一套新设备,该套设备预计平均每年能给企业带来100万元的收入,为了维护设备的正常运行,第一年需要各种维护费用10万元,且从第二年开始,每年比上一年所需的维护费用要增加10万元(1)求该设备给企业带来的总利润(万元)与使用年数的函数关系;(2)试计算这套设备使用多少年,可使年平均利润最大?年平均利润最大为多少万元?18.某地统计局调查了10000名居民的月收入,并根据所得数据绘制了样本的频率分布直方图如图所示.(1)求居民月收入在[3000,3500)内的频率;(2)根据频率分布直方图求出样本数据的中位数;(3)为了分析居民的月收入与年龄、职业等方面的关系,必须按月收入再从这10000中用分层抽样的方法抽出100人做进一步分析,则应从月收入在[2500,3000)内的居民中抽取多少人?19.已知.(1)求;(2)求向量与的夹角的余弦值.20.某工厂共有200名工人,已知这200名工人去年完成的产品数都在区间(单位:万件)内,其中每年完成14万件及以上的工人为优秀员工,现将其分成5组,第1组、第2组第3组、第4组、第5组对应的区间分别为,,,,,并绘制出如图所示的频率分布直方图.(1)选取合适的抽样方法从这200名工人中抽取容量为25的样本,求这5组分别应抽取的人数;(2)现从(1)中25人的样本中的优秀员工中随机选取2名传授经验,求选取的2名工人在同一组的概率.21.如图,在平面四边形中,,,,,.(1)求的长;(2)求的长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】由题意,所以,因此,从而,可知不可能等于.2、D【解析】
从3名男生和2名女生中任选2名学生的所有结果有“2名男生”、“2名女生”、“1名男生和1名女生”.选项A中的两个事件为对立事件,故不正确;选项B中的两个事件不是互斥事件,故不正确;选项C中的两个事件不是互斥事件,故不正确;选项D中的两个事件为互斥但不对立事件,故正确.选D.3、D【解析】
由约束条件画出可行域,将问题转化为在轴截距最小,通过平移可知当过时,取最大值,代入可得结果.【详解】由约束条件可得可行域如下图阴影部分所示:当取最大值时,在轴截距最小平移直线可知,当过时,在轴截距最小又本题正确选项:【点睛】本题考查线性规划中的最值问题的求解,关键是能够将问题转化为直线在轴截距的最值的求解问题,通过直线平移来进行求解,属于常考题型.4、C【解析】
先求得平均数,再根据方差公式计算。【详解】数据的平均数为:方差是=2,选C。【点睛】方差公式,代入计算即可。5、C【解析】
由题意,利用等差数列前n项和公式求出a1=﹣6d,由此能求出S13的值.【详解】∵等差数列{an}的前n项和为Sn,S9=S4,∴4a1,解得a1=﹣6d,∴S1378d﹣78d=1.故选:C.【点睛】本题考查等差数列的前n项和公式的应用,考查运算求解能力,是基础题.6、A【解析】
由题意利用等比数列的通项公式,求出公比的值.【详解】解:等比数列中,,,,则公比,故选:.【点睛】本题主要考查等比数列的通项公式的应用,属于基础题.7、B【解析】
利用充分必要条件直接推理即可【详解】若“、、”成等比数列,则;成立反之,若“”,如果a=b=G=0则、、”不成等比数列,故选B.【点睛】本题考查充分必要条件的判定,熟记等比数列的性质是关键,是基础题8、B【解析】
①根据空间线线位置关系的定义判定;②根据面面平行的性质判定;③根据空间线线垂直的定义判定;④根据线面垂直的性质判定.【详解】解:①若,,与的位置关系不定,故错;②若,,,则或、异面,故错;③若,,则或、异面,故错;④若,,则,故正确.故选:.【点睛】本题考查了空间线面位置关系,考查了空间想象能力,属于中档题.9、B【解析】
由正弦定理得,利用余弦定理可求出的值,然后利用三角形的面积公式可求得的面积.【详解】,,又,,由余弦定理可得,可得,所以,的面积为.故选:B.【点睛】本题考查三角形面积的计算,同时也考查了余弦定理解三角形,考查计算能力,属于中等题.10、B【解析】
根据直线斜率与倾斜角的关系求解即可.【详解】因为直线的倾斜角为,故直线斜率.故选:B【点睛】本题主要考查了直线的倾斜角与斜率的关系,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】,所以,解得.12、3【解析】
将平方再利用数量积公式求解即可.【详解】因为,故.化简得.因为,故.故答案为:3【点睛】本题主要考查了模长与数量积的综合运用,经常利用平方去处理.属于基础题.13、【解析】
本题考查的是数列求和,关键是构造新数列,求和时先考虑比较特殊的前两项,剩余7项按照等差数列求和即可.【详解】令,则所求式子为的前9项和.其中,,从第三项起,是一个以1为首项,4为公差的等差数列,,故答案为1.【点睛】本题考查的是数列求和,关键在于把所求式子转换成为等差数列的前项和,另外,带有绝对值的数列在求和时要注意里面的特殊项.14、【解析】
先将角度化为弧度,再根据弧长公式求解.【详解】解:圆心角,弧长为,,即该圆的半径长.故答案为:.【点睛】本题考查了角度和弧度的互化以及弧长公式的应用问题,属于基础题.15、3.5.【解析】
根据茎叶图,将两组数据按照从小到大顺序排列,由中位数和平均数相等,即可解得的值.【详解】甲乙两组数据的中位数相等,平均数也相等对于甲组将数据按照从小到大顺序排列后可知,中位数为65.所以乙组中位数也为65.根据乙组数据可得则由两组的平均数相等,可知两组的总数也相等,即解得故答案为:;【点睛】本题考查了茎叶图的简单应用,由茎叶图求中位数和平均数,属于基础题.16、④【解析】试题分析:根据线面平行的判定定理,面面平行的判定定理,面面平行的性质定理,及面面垂直的性质定理,对题目中的四个结论逐一进行分析,即可得到答案.解:当m∥n,n⊂α,,则m⊂α也可能成立,故①错误;当m⊂α,n⊂α,m∥β,n∥β,m与n相交时,α∥β,但m与n平行时,α与β不一定平行,故②错误;若α∥β,m⊂α,n⊂β,则m与n可能平行也可能异面,故③错误;若α⊥β,α∩β=m,n⊂α,n⊥m,由面面平行的性质,易得n⊥β,故④正确故答案为④考点:本题考查的知识点是平面与平面之间的位置关系,直线与平面之间的位置关系.点评:熟练掌握空间线与线,线与面,面与面之间的关系的判定方法及性质定理,是解答本题的关键,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)这套设备使用6年,可使年平均利润最大,最大利润为35万元【解析】
(1)运用等差数列前项和公式可以求出年的维护费,这样可以由题意可以求出该设备给企业带来的总利润(万元)与使用年数的函数关系;(2)利用基本不等式可以求出年平均利润最大值.【详解】解:(1)由题意知,年总收入为万元年维护总费用为万元.∴总利润,即,(2)年平均利润为∵,∴当且仅当,即时取“”∴答:这套设备使用6年,可使年平均利润最大,最大利润为35万元.【点睛】本题考查了应用数学知识解决生活实际问题的能力,考查了基本不等式的应用,考查了数学建模能力,考查了数学运算能力.18、(1)0.15(2)2400(3)25人【解析】
(1)由频率分布直方图计算可得月收入在[3000,3500)内的频率;(2)分别计算小长方形的面积值,利用中位数的特点即可确定中位数的值;(3)首先确定10000人中月收入在[2500,3000]内的人数,然后结合分层抽样的特点可得应抽取的人数.【详解】(1)居民月收入在[3000,3500]内的频率为(2)因为,,,,所以样本数据的中位数为.(3)居民月收入在[2500,3000]内的频率为,所以这10000人中月收入在[2500,3000]内的人数为.从这10000人中用分层抽样的方法抽出100人,则应从月收入在[2500,3000]内的居民中抽取(人).【点睛】利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.19、(1);(2).【解析】
(1)根据题意求出,即可求解;(2)向量与的夹角的余弦值为:代入求值即可得解.【详解】(1)由题:,解得:(2)向量与的夹角的余弦值为:【点睛】此题考查平面向量数量积的运算,根据运算法则求解数量积和模长,求解向量夹角的余弦值.20、(1)第1组:2;第2组:8,;第3组:9;第4组:3;第5组:3(2)【解析】
(1)根据频率之和为列方程,解方程求得的值.然后根据分层抽样的计算方法,计算出每组抽取的人数.(2)利用列举法,结合古典概型概率计算公式,计算出所求概率.【详解】(1):,.用分层抽样比较合适.第1组应抽取的人数为,第2组应抽取的人数为,第3组应抽取的人数为,第4组应抽取的人数为,第5组应抽取的人数为.(2)(1)中25人的样本中的优秀员工中,第4组有3人,记这3人分别为,第5组有3人,记这3人分别为.从这6人中随机选取2名,所有的基本事件为:,,,,,,,,,,,,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高危药物投药的安全管理
- 无痛输注技术的安全护理
- 济南市七上期末数学试卷
- 2025年辽宁省建平县事业单位公开招聘辅警考试题带答案分析
- 巴基斯坦英文介绍课件
- 工艺品作文指导课件
- 工程路基施工课件
- 疫情教育课件
- 疫情教育爱国班会课件
- 疫情政策导读课件制作
- S-150溶剂油化学品安全技术说明书(江苏华伦)
- 七年级音乐作业
- 2022年临沂科技普通中等专业学校教师招聘笔试题库及答案解析
- 动物医院-危重病例协议书
- 江苏建筑施工安全台账(正式版)
- 高中数学必修二 第十章 概率 章末测试(提升)(含答案)
- “三级”安全安全教育记录卡
- 国家大剧院幕墙、金属屋面及钢结构系统介绍
- 净化磷酸装置水联动试车方案
- BICC呼叫流程介绍
- 市政道路沥青混凝土路面施工组织设计
评论
0/150
提交评论