《线段的垂直平分线》复习巩固基础提高知识点讲解及练习题解析_第1页
《线段的垂直平分线》复习巩固基础提高知识点讲解及练习题解析_第2页
《线段的垂直平分线》复习巩固基础提高知识点讲解及练习题解析_第3页
《线段的垂直平分线》复习巩固基础提高知识点讲解及练习题解析_第4页
《线段的垂直平分线》复习巩固基础提高知识点讲解及练习题解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE线段的垂直平分线——巩固练习(基础)【巩固练习】一.选择题1.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A.30°B.40°C.50°D.60°2.如图,△ABC中,DE是AB的垂直平分线,交BC于点D,交AB于点E,已知AE=1cm,△ACD的周长为12cm,则△ABC的周长是()A.13cmB.14cmC.15cmD.16cm3.(2015•达州)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48° B.36° C.30° D.24°4.如图,已知直角三角形ABC中,∠ACB=90°,E为AB上一点,且CE=EB,ED⊥CB于D,则下列结论中不一定成立的是()A.AE=BEB.CE=ABC.∠CEB=2∠AD.AC=AB5.如图,等腰△ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连接BE,则∠CBE等于() A、80° B、70° C、60° D、50°6.如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=().A.25°B.27°C.30°D.45°二.填空题7.(2015•徐州校级模拟)如图,在△ABC中,AB=6cm,AC=4cm,BC的垂直平分线分别角AB、BC于D、E,则△ACD的周长为cm.8.如图,ΔABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=_____;(2)若AB=5cm,BC=3cm,则ΔPBC的周长=_____.9.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为.10.如图,在中,∠C=90°,∠A=30°,CD=2cm,AB的垂直平分线MN交AC于D,连结BD,则AC的长是___________cm.11.如图,在△ABC中,∠C=90°,AB的垂直平分线MN分别交AC,AB于点D,E.若∠CBD:∠DBA=3:1,则∠A的度数为________.12.如图,在△ABC中,AC=16cm,AB的垂直平分线交AC于D,如果BC=10cm,那么△BCD的周长是cm.三.解答题:13.(2015秋•武昌区期中)如图,在△ABC中,△ABC的周长为38cm,∠BAC=140°,AB+AC=22cm,AB、AC的垂直平分线分别交BC于E、F,与AB、AC分别交于点D、G,求:(1)∠EAF的度数;(2)求△AEF的周长.14.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.15.为了推进农村新型合作医疗制度改革,准备在某镇新建一个医疗点P,使P到该镇所属A村、B村、C村的村委会所在地的距离都相等(A、B、C不在同一直线上,地理位置如下图),请你用尺规作图的方法确定点P的位置.要求:写出已知、求作;不写作法,保留作图痕迹.【答案与解析】一.选择题1.【答案】B;【解析】∵∠B=90°,∠BAE=10°∴∠AEB=80°,由垂直平分线的性质,AE=CE,∠EAC=∠C,∵∠AEB=∠EAC+∠C=2∠C,∴∠C=40°2.【答案】B;【解析】∵DE是AB的垂直平分线,∴AD=BD,AB=2AE=2又∵△ACD的周长=AC+AD+CD=AC+BD+CD=AC+BC=12,∴△ABC的周长是12+2=14(cm).3.【答案】A;【解析】解:∵BD平分∠ABC,∴∠DBC=∠ABD=24°,∵∠A=60°,∴∠ACB=180°﹣60°﹣24°×2=72°,∵BC的中垂线交BC于点E,∴BF=CF,∴∠FCB=24°,∴∠ACF=72°﹣24°=48°,故选:A.4.【答案】D;【解析】∵CE=EB,∴∠B=∠BCE.

∵∠ACB=90°,

∴∠ACE+∠BCE=90°,∠A+∠B=90°.

∴∠A=∠ACE.

∴AE=CE=EB.

故选项A、B都正确;

∵∠ACB=90°,ED⊥CB,

∴AC∥ED.

则∠A=∠DEB,∠CED=∠ACE.

又∠A=∠ACE,

∴∠CEB=2∠A.

故选项C正确;

当∠B=30°或∠A=60°时,选项D才成立.

故选D.5.【答案】C;【解析】三角形垂直平分线的交点到三个顶点的距离相等.6.【答案】B;【解析】AC,BD互为对方的中垂线,∠ABD=∠CBD=∠E=54°÷2=27°.二.填空题7.【答案】10;【解析】解:∵DE为BC的垂直平分线,∴CD=BD,∴△ACD的周长=AC+CD+AD=AC+AD+BD=AC+AB,而AC=4cm,AB=6cm,∴△ACD的周长为4+6=10cm.故答案为:10.8.【答案】70,8;【解析】由垂直平分线的性质,AP=BP,∠A=∠ABP=35°,∠BPA=110°,∠BPC=70°.ΔPBC的周长=BP+PC+BC=AP+PC+BC=5+3=8cm.9.【答案】6;【解析】∵ED+DC+EC=24,①(AB+AC+BC)-(AE+ED+DC+AC)=12即BE+BD-DE=12.②∵BE=CE,BD=DC,∴①-②得,DE=6.10.【答案】6;【解析】直角三角形中,30°所对的边等于斜边的一半.AD=DB=4,AC=4+2=6.11.【答案】18°;【解析】∠A=∠ABD=x,∠CBD=3x,5x=90°,x=18°.12.【答案】26;【解析】△BCD的周长=BD+DC+BC=AD+DC+BC=16+10=26cm.三.解答题13.【解析】解:(1)∵DE、FG分别垂直平分AB、AC,∴EA=EB,FA=FC,∴∠EBA=∠EAB,∠FAC=∠FCA.设∠EBA=∠EAB=α,∠FAC=∠FCA=β,∵∠BAC=140°,∴α+β=40°,∴∠BAE+∠FAC=40°,∴∠EAF=140°﹣40°=100°;(2)△AEF的周长=AE+AF+EF=BE+EF+FC=BC=38﹣22=16cm.14.【解析】证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,∴△ADE≌△FCE(A.S.A),∴FC=AD(全等三角形的性质).

(2)∵△ADE≌△FCE,∴AE=EF,AD=CF(全等三角形的对应边相等),∵BE⊥AE且F是BC与AE延长线的交点∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF,∵AD=CF(已证),∴AB=BC+AD(等量代换).15.【解析】解:已知、B村、C村,求作新建一个医疗点P,使P到该镇所属A村、B村、C村的村委会所在地的距离都相等.

线段的垂直平分线知识讲解(基础)【学习目标】1.掌握线段的垂直平分线的性质定理及其逆定理,能够利用尺规作已知线段的垂直平分线.2.会证明三角形的三条中垂线必交于一点.掌握三角形的外心性质定理.3.已知底边和底边上的高,求作等腰三角形.4.能运用线段的垂直平分线的性质定理及其逆定理解决简单的几何问题及实际问题.【要点梳理】要点一、线段的垂直平分线1.定义经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.2.线段垂直平分线的做法求作线段AB的垂直平分线.作法:(1)分别以点A,B为圆心,以大于AB的长为半径作弧,两弧相交于C,D两点;(2)作直线CD,CD即为所求直线.要点诠释:(1)作弧时的半径必须大于AB的长,否则就不能得到两弧的交点了.(2)线段的垂直平分线的实质是一条直线.要点二、线段的垂直平分线定理

线段的垂直平分线定理:线段垂直平分线上的点到这条线段两个端点的距离相等.

要点诠释:线段的垂直平分线定理也就是线段垂直平分线的性质,是证明两条线段相等的常用方法之一.同时也给出了引辅助线的方法,“线段垂直平分线,常向两端把线连”.就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.要点三、线段的垂直平分线逆定理线段的垂直平分线逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.要点诠释:到线段两个端点距离相等的所有点组成了线段的垂直平分线.线段的垂直平分线可以看作是与这条线段两个端点的距离相等的所有点的集合.要点四、三角形的外心三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.要点诠释:1.三角形三条边的垂直平分线必交于一点(三线共点),该点即为三角形外接圆的圆心.2.锐角三角形的外心在三角形内部;钝角三角形的外心在三角形外部;直角三角形的外心在斜边上,与斜边中点重合.3.外心到三顶点的距离相等.要点五、尺规作图作图题是初中数学中不可缺少的一类试题,它要求写出“已知,求作,作法和画图”,画图必须保留痕迹,在现行的教材里,一般不要求写出作法,但是必须保留痕迹.证明过程一般不用写出来.最后要点题即“xxx即为所求”.【典型例题】类型一、线段的垂直平分线定理 1、如图,△ABC中AC>BC,边AB的垂直平分线与AC交于点D,已知AC=5,BC=4,则△BCD的周长是()A.9B.8C.7D.6【思路点拨】先根据线段垂直平分线的性质得到AD=BD,即AD+CD=BD+CD=AC,再根据△BCD的周长=BC+BD+CD即可进行解答.【答案】A;【解析】因为BD=AD,所以△BCD的周长=BD+CD+BC=AD+CD+BC=5+4=9.【总结升华】此题正是应用了线段垂直平分线的性质定理,也就是已知直线是线段垂直平分线,那么垂直平分线上的点到线段的两个端点距离相等,从而把三角形的边进行转移,进而求得三角形的周长.举一反三:【变式1】如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论错误的是()A.BD平分∠ABCB.△BCD的周长等于AB+BCC.AD=BD=BCD.点D是线段AC的中点【答案】D;提示:根据等边对等角、三角形内角和定理及线段垂直平分线的性质定理即可推得选项A、B、C正确;所以选D,另外,注意排除法在解选择题中的应用.【变式2】(2015秋•江阴市校级月考)如图,△ABC中,BC=7,AB的垂直平分线分别交AB、BC于点D、E,AC的垂直平分线分别交AC、BC于点F、G.求△AEG的周长.【答案】解:∵DE为AB的中垂线,∴AE=BE,∵FG是AC的中垂线,∴AG=GC,△AEG的周长等于AE+EG+GA,分别将AE和AG用BE和GC代替得:△AEG的周长等于BE+EG+GC=BC,所以△AEG的周长为BC的长度即7.类型二、线段的垂直平分线的逆定理2、如图,已知AB=AC,∠ABD=∠ACD,求证:AD是线段BC的垂直平分线.【答案与解析】证明:∵AB=AC(已知)∴∠ABC=∠ACB(等边对等角)又∵∠ABD=∠ACD(已知)∴∠ABD-∠ABC=∠ACD-∠ACB(等式性质)即∠DBC=∠DCB∴DB=DC(等角对等边)∵AB=AC(已知)DB=DC(已证)∴点A和点D都在线段BC的垂直平分线上(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上)∴AD是线段BC的垂直平分线。【总结升华】本题需要注意的是对于线段垂直平分线性质定理的逆定理的应用,部分学生可能错误地认为“因为到线段两端距离相等的点在线段垂直平分线上,所以已知AB=AC就可以说明AD是线段BC的垂直平分线了”,但却忽略了“两点确定一条直线”,所以只有当AB=AC,DB=DC时,才能说明AD是线段BC的垂直平分线.举一反三:【变式】如图,P是∠MON的平分线上的一点,PA⊥OM,PB⊥ON,垂足分别为A、B.求证:PO垂直平分AB.【答案】证明:∵OP是角平分线,∴∠AOP=∠BOP∵PA⊥OM,PB⊥ON,∴∠OAP=∠OBP=90°∴在△AOP和△BOP中∴△AOP≌△BOP(AAS)∴OA=OB∴PO垂直平分AB(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上).类型三、线段的垂直平分线定理与逆定理的综合应用3、已知:如图,AB=AC,DB=DC,E是AD上一点.求证:BE=CE.【答案与解析】证明:连结BC∵AB=AC,DB=DC.∴点A、D在线段BC的垂直平分线上(和一条线段两个端点距离相等的点,在这条线段的垂直平分线上)∴AD是线段BC的垂直平分线,∵点E在AD上,∴BE=CE(线段垂直平分线上的任意一点到这条线段两个端点的距离相等).【总结升华】本题综合运用了线段垂直平分线的性质定理及其逆定理,通过本例要学会灵活运用这两个定理解决几何问题,性质定理可以用来证明线段相等,本题中要注意必须有和已知线段两端距离相等的两个点才能确定垂直平分线这条直线.4、如图所示,在Rt△ABC中,∠ACB=90°,AC=BC,D为BC边上的中点,CE⊥AD于点E,BF∥AC交CE的延长线于点F,求证:AB垂直平分DF.【思路点拨】先根据ASA判定△ACD≌△CBF得到BF=CD,然后又因为D为BC中点,根据中点定义得到CD=BD,等量代换得到BF=BD,再根据角度之间的数量关系求出∠ABC=∠ABF,即BA是∠FBD的平分线,从而利用等腰三角形三线合一的性质求证即可.【答案与解析】证明:连接DF,

∵∠BCE+∠ACE=90°,∠ACE+∠CAE=90°,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论